Robust Control Toolbox ${ }^{\text {TM }}$

User's Guide

R2011b

Gary Balas
Richard Chiang
Andy Packard
Michael Safonov

MATLAB

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Robust Control Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 2005-2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2005 First printing
March 2006 Online only
September 2006 Online only
March 2007 Online only
September 2007 Online only
March 2008 Online only
October 2008 Online only
March 2009
September 2009 March 2010
September 2010
April 2011
September 2011 Online only

New for Version 3.0.2 (Release 14SP3)
Revised for Version 3.1 (Release 2006a)
Revised for Version 3.1.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.3.1 (Release 2008a)
Revised for Version 3.3.2 (Release 2008b)
Revised for Version 3.3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.4.1 (Release 2010a)
Revised for Version 3.5 (Release 2010b)
Revised for Version 3.6 (Release 2011a)
Revised for Version 4.0 (Release 2011b)

Building Uncertain Models

Introduction to Uncertain Atoms 1-2
Uncertain Real Parameters 1-3
Uncertain LTI Dynamics Atoms 1-10
Complex Parameter Atoms 1-13
Complex Matrix Atoms 1-15
Unstructured Uncertain Dynamic Systems 1-17
Uncertain Matrices 1-19
Creating Uncertain Matrices from Uncertain Atoms 1-19
Accessing Properties of a umat 1-20
Row and Column Referencing 1-21
Matrix Operation on umat Objects 1-22
Substituting for Uncertain Atoms 1-23
Uncertain State-Space Systems (uss) 1-26
Creating Uncertain Systems 1-26
Properties of uss Objects 1-27
Sampling Uncertain Systems 1-28
Feedback Around an Uncertain Plant 1-29
Interpreting Uncertainty in Discrete Time 1-31
Lifting a ss to a uss 1-32
Handling Delays in uss 1-32
Uncertain frd 1-35
Creating Uncertain Frequency Response Objects 1-35
Properties of ufrd Objects 1-35
Interpreting Uncertainty in Discrete Time 1-37
Lifting an frd to a ufrd 1-38
Handling Delays in ufrd 1-38
Basic Control System Toolbox and MATLAB Interconnections 1-39
Simplifying Representation of Uncertain Objects 1-40
Effect of the Autosimplify Property 1-41
Direct Use of simplify 1-43
Sampling Uncertain Objects 1-45
Generating One Sample 1-45
Generating Many Samples 1-45
Sampling ultidyn Atoms 1-46
Substitution by usubs 1-49
Specifying the Substitution with Structures 1-50
Nominal and Random Values 1-51
Array Management for Uncertain Objects 1-52
Referencing Arrays 1-52
Creating Arrays with stack and cat Functions 1-53
Creating Arrays by Assignment 1-55
Binary Operations with Arrays 1-56
Creating Arrays with usample 1-57
Creating Arrays with usubs 1-58
Creating Arrays with gridureal 1-59
Creating Arrays with repmat 1-60
Creating Arrays with repsys 1-61
Using permute and ipermute 1-62
Decomposing Uncertain Objects (for Advanced Users) 1-63
Normalizing Functions for Uncertain Atoms 1-63
Properties of the Decomposition 1-65
Syntax of lftdata 1-66
Advanced Syntax of lftdata 1-68
Generalized Robustness Analysis
2
Introduction to Generalized Robustness Analysis 2-2
Robust Stability Margin 2-4
Robust Performance Margin 2-5
Worst-Case Gain Measure 2-6
Introduction to Linear Matrix Inequalities
3
Linear Matrix Inequalities 3-2
LMI Features 3-2
LMIs and LMI Problems 3-4
Three Generic LMI Problems 3-5
Further Mathematical Background 3-10
Bibliography 3-11
LMI Lab
4
Introduction 4-2
Some Terminology 4-2
Overview of the LMI Lab 4-5
Specifying a System of LMIs 4-8
A Simple Example 4-9
Initializing the LMI System 4-11
Specifying the LMI Variables 4-11
Specifying Individual LMIs 4-13
Specifying LMIs with the LMI Editor 4-16
How It All Works 4-19
Querying the LMI System Description 4-21
lmiinfo 4-21
lminbr and matnbr 4-21
LMI Solvers 4-22
From Decision to Matrix Variables and Vice Versa 4-28
Validating Results 4-29
Modifying a System of LMIs 4-30
Deleting an LMI 4-30
Deleting a Matrix Variable 4-30
Instantiating a Matrix Variable 4-31
Advanced Topics 4-33
Structured Matrix Variables 4-33
Complex-Valued LMIs 4-35
Specifying $c^{T} \mathrm{x}$ Objectives for mincx 4-38
Feasibility Radius 4-40
Well-Posedness Issues 4-40
Semi-Definite B(x) in gevp Problems 4-41
Efficiency and Complexity Issues 4-42
Solving $\mathrm{M}+\mathrm{P}^{\mathrm{T}} \mathrm{XQ}+\mathrm{Q}^{\mathrm{T}} \mathrm{X}^{\mathrm{T}} \mathrm{P}<0$ 4-43
Bibliography 4-45
Analyzing Uncertainty Effects in Simulink
5
Overview 5-2
Robust Control Toolbox Block Library 5-4
Specifying Uncertainty Using Uncertain State Space Blocks 5-5
How to Specify Uncertainty in Uncertain State Space Blocks 5-5
Next Steps 5-7
Simulating Uncertainty Effects 5-8
How to Simulate Effects of Uncertainty 5-8
How to Vary Uncertainty Values 5-8
Computing Uncertain State-Space Models from Simulink Models 5-19
Ways to Compute Uncertain State-Space Models from Simulink Models 5-19
Working with Models Containing Uncertain State Space Blocks 5-19
Working with Models Containing Core Simulink or Custom Blocks 5-20
Next Steps 5-25
Analyzing Stability Margins 5-26
Using the loopmargin Command 5-26
How Stability Margin Analysis Using Loopmargin Differs Between Simulink and LTI Models 5-26
How to Analyze Stability Margin of Simulink Models 5-27
Example - Computing Stability Margins of a Simulink Model 5-28
Examples
A
Building Uncertain Models A-2
The LMI Lab A-2
Analyzing Uncertainty Effects in Simulink A-2

Building Uncertain Models

- "Introduction to Uncertain Atoms" on page 1-2
- "Uncertain Matrices" on page 1-19
- "Uncertain State-Space Systems (uss)" on page 1-26
- "Uncertain frd" on page 1-35
- "Basic Control System Toolbox and MATLAB Interconnections" on page 1-39
- "Simplifying Representation of Uncertain Objects" on page 1-40
- "Sampling Uncertain Objects" on page 1-45
- "Substitution by usubs" on page 1-49
- "Array Management for Uncertain Objects" on page 1-52
- "Decomposing Uncertain Objects (for Advanced Users)" on page 1-63

Introduction to Uncertain Atoms

Uncertain atoms are the building blocks used to form uncertain matrix objects and uncertain system objects. There are 5 classes of uncertain atoms:

Function	Description
ureal	Uncertain real parameter
ultidyn	Uncertain, linear, time-invariant dynamics
ucomplex	Uncertain complex parameter
ucomplexm	Uncertain complex matrix
udyn	Uncertain dynamic system

All of the atoms have properties, which are accessed through get and set methods. This get and set interface mimics the Control System Toolbox ${ }^{\text {TM }}$ and MATLAB ${ }^{\circledR}$ Handle Graphics ${ }^{\circledR}$ behavior. For instance, get(a,'PropertyName') is the same as a.PropertyName, and set (b,'PropertyName', Value) is the same as b.PropertyName = value. Functionality also includes tab-completion and case-insensitive, partial name property matching.

For ureal, ucomplex and ucomplexm atoms, the syntax is

```
p1 = ureal(name, NominalValue, Prop1, val1, Prop2, val2,...);
p2 = ucomplex(name, NominalValue, Prop1, val1, Prop2, val2,...);
p3 = ucomplexm(name, NominalValue, Prop1, val1, Prop2, val2,...);
```

For ultidyn and udyn, the NominalValue is fixed, so the syntax is

```
p4 = ultidyn(name, ioSize, Prop1, val1, Prop2, val2,...);
p5 = udyn(name, ioSize, Prop1, val1, Prop2, val2,...);
```

For ureal, ultidyn, ucomplex and ucomplexm atoms, the command usample will generate a random instance (i.e., not uncertain) of the atom, within its modeled range. For example,

```
usample(p1)
```

creates a random instance of the uncertain real parameter p1. With an integer argument, whole arrays of instances can be created. For instance

```
usample(p4,100)
```

generates an array of 100 instances of the ultidyn object p4. See "Sampling Uncertain Objects" on page 1-45 to learn more about usample.

Uncertain Real Parameters

An uncertain real parameter is used to represent a real number whose value is uncertain. Uncertain real parameters have a name (the Name property), and a nominal value (the NominalValue property). Several other properties (PlusMinus, Range, Percentage) describe the uncertainty in parameter values.

All properties of a ureal can be accessed through get and set. The properties are:

Properties	Meaning	Class	
Name	Internal name	char	
NominalValue	Nominal value of atom	double	
Mode	Signifies which description (from 'PlusMinus ', 'Range ', 'Percentage ') of uncertainty is invariant when NominalValue is changed	char	
PlusMinus	Additive variation	scalar or 1x2 double	
Range	Numerical range	1x2 double	
Percentage	Additive variation (\% of absolute value of nominal)	scalar or 1x2 double	
AutoSimplify	'off' \| \{'basic '\}	'full'	char

The properties Range, Percentage and PlusMinus are all automatically synchronized. If the nominal value is 0 , then the Mode cannot be

Percentage. The Mode property controls what aspect of the uncertainty remains unchanged when NominalValue is changed. Assigning to any of Range/Percentage/PlusMinus changes the value, but does not change the mode.

The AutoSimplify property controls how expressions involving the real parameter are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off' (no simplification performed) and 'full' (model-reduction-like techniques are applied). See "Simplifying Representation of Uncertain Objects" on page 1-40 to learn more about the AutoSimplify property and the command simplify.

If no property/value pairs are specified, default values are used. The default Mode is PlusMinus, and the default value of PlusMinus is [$\left.\begin{array}{cc}-1 & 1\end{array}\right]$. Some examples are shown below. In many cases, the full property name is not specified, taking advantage of the case-insensitive, partial name property matching.

Create an uncertain real parameter, nominal value 3, with default values for all unspecified properties (including plus/minus variability of 1). View the properties and their values, and note that the Range and Percentage descriptions of variability are automatically maintained.

```
a = ureal('a',3)
Uncertain Real Parameter: Name a, NominalValue 3, variability = [-1 1]
get(a)
            Name: 'a'
    NominalValue: 3
            Mode: 'PlusMinus'
            Range: [2 4]
        PlusMinus: [-1 1]
        Percentage: [-33.3333 33.3333]
    AutoSimplify: 'basic'
```

Create an uncertain real parameter, nominal value 2, with 20% variability. Again, view the properties, and note that the Range and PlusMinus descriptions of variability are automatically maintained.

```
b = ureal('b',2,'percentage',20)
```

```
Uncertain Real Parameter: Name b, NominalValue 2, variability = [-20 20]%
get(b)
        Name: 'b'
NominalValue: 2
            Mode: 'Percentage'
            Range: [1.6000 2.4000]
        PlusMinus: [-0.4000 0.4000]
        Percentage: [-20.0000 20.0000]
AutoSimplify: 'basic'
```

Change the range of the parameter. All descriptions of variability are automatically updated, while the nominal value remains fixed. Although the change in variability was accomplished by specifying the Range, the Mode is unaffected, and remains Percentage.

```
b.Range = [1.9 2.3];
get(b)
    Name: 'b'
NominalValue: 2
                            Mode: 'Percentage'
            Range: [1.9000 2.3000]
        PlusMinus: [-0.1000 0.3000]
        Percentage: [-5.0000 15.0000]
AutoSimplify: 'basic'
```

As mentioned, the Mode property signifies what aspect of the uncertainty remains unchanged when NominalValue is modified. Hence, if a real parameter is in Percentage mode, then the Range and PlusMinus properties are determined from the Percentage property and NominalValue. Changing NominalValue preserves the Percentage property, and automatically updates the Range and PlusMinus properties.

```
b.NominalValue = 2.2;
get(b)
    Name: 'b'
    NominalValue: 2.2000
            Mode: 'Percentage'
            Range: [2.0900 2.5300]
        PlusMinus: [-0.1100 0.3300]
        Percentage: [-5.0000 15.0000]
```


AutoSimplify: 'basic'

Create an uncertain parameter with an unsymmetric variation about its nominal value.

```
c = ureal('c',-5,'per',[-20 30]);
get(c)
            Name: 'c'
    NominalValue: -5
            Mode: 'Percentage'
            Range: [ -6 -3.5000]
            PlusMinus: [ -1 1.5000]
        Percentage: [-20 30]
AutoSimplify: 'basic'
```

Create an uncertain parameter, specifying variability with Percentage, but force the Mode to be Range.

```
d = ureal('d',-1,'mode','range','perc',[-40 60]);
get(d)
            Name: 'd'
    NominalValue: -1
            Mode: 'Range'
            Range: [-1.4000 -0.4000]
        PlusMinus: [-0.4000 0.6000]
        Percentage: [-40.0000 60]
    AutoSimplify: 'basic'
```

Finally, create an uncertain real parameter, and set the AutoSimplify property to 'full'.

```
e = ureal('e',10,'plusminus',[-23],'mode','perce',...
'autosimplify','full')
Uncertain Real Parameter: Name e, NominalValue 10, variability = [-20 30]%
get(e)
    Name: 'e'
    NominalValue: 10
            Mode: 'Percentage'
            Range: [8 13]
        PlusMinus: [-2 3]
```

```
    Percentage: [-20 30]
AutoSimplify: 'full'
```

Specifying conflicting values for Range/Percentage/PlusMinus in a multiple property/value set is not an error. In this case, the last (in list) specified property is used. This last occurrence also determines the Mode, unless Mode is explicitly specified, in which case that is used, regardless of the property/value pairs ordering.

```
f = ureal('f',3,'plusminus',[-2 1],'perce',40)
Uncertain Real Parameter: Name f, NominalValue 3, variability = [-40 40]%
g = ureal('g',2,'plusminus',[-2 1],'mode','range','perce',40)
Uncertain Real Parameter: Name g, NominalValue 2, Range [1.2 2.8]
g.Mode
ans =
Range
```

Create an uncertain real parameter, use usample to generate 1000 instances (resulting in a 1-by-1-by-1000 array), reshape the array, and plot a histogram, with 20 bins (within the range of 2 to 4).

```
h = ureal('h',3);
hsample = usample(h,1000);
hist(reshape(hsample,[1000 1]),20);
```


Make the range unsymmetric about the nominal value, and repeat the sampling, and histogram plot (with 40 bins over the range of 2 -to-6)

```
h.Range = [2 6];
hsample = usample(h,1000);
hist(reshape(hsample,[1000 1]),40);
```


Note that the distribution is skewed. However, the number of samples less than the nominal value and the number of samples greater than the nominal value is equal (on average). Verify this.

```
length(find(hsample(:)<h.NominalValue))
ans =
    509
length(find(hsample(:)>h.NominalValue))
ans =
    4 9 1
```

The distribution used in usample is uniform in the normalized description of the uncertain real parameter. See "Decomposing Uncertain Objects (for Advanced Users)" on page 1-63 to learn more about the normalized description.

There is no notion of an empty ureal (or any other atom, for that matter). ureal, by itself, creates an unnamed atom, with default property values. The given name is 'UNNAMED'. This can be observed with get and set.

```
get(ureal)
    Name: 'UNNAMED'
```

```
    NominalValue: 0
                            Mode: 'PlusMinus'
                Range: [-1 1]
        PlusMinus: [-1 1]
        Percentage: [-Inf Inf]
    AutoSimplify: 'basic'
set(ureal)
            Name: 'String'
NominalValue: '1x1 real DOUBLE'
                    Mode: 'Range | PlusMinus'
            Range: '1x2 DOUBLE'
        PlusMinus: '1x2 or scalar DOUBLE'
    Percentage: 'Not settable since Nominal==0'
AutoSimplify: '['off' | 'basic' | 'full']'
```


Uncertain LTI Dynamics Atoms

Uncertain linear, time-invariant objects, ultidyn, are used to represent unknown linear, time-invariant dynamic objects, whose only known attributes are bounds on their frequency response. Uncertain linear, time-invariant objects have an internal name (the Name property), and are created by specifying their size (number of outputs and number of inputs).

The property Type specifies whether the known attributes about the frequency response are related to gain or phase. The property Type may be 'GainBounded' or 'PositiveReal'. The default value is 'GainBounded'.

The property Bound is a single number, which along with Type, completely specifies what is known about the uncertain frequency response. Specifically, if Δ is an ultidyn atom, and if Y denotes the value of the Bound property, then the atom represents the set of all stable, linear, time-invariant systems whose frequency response satisfies certain conditions:

If Type is 'GainBounded', $\dot{\bar{\sigma}}[\Delta(\omega)] \leq \gamma$ for all frequencies. When Type is 'GainBounded ', the default value for Bound (i.e., γ) is 1. The NominalValue of Δ is always the 0 -matrix.

If Type is 'PositiveReal ',$\Delta(\omega)+\Delta^{*}(\omega) \geq 2 \gamma$ for all frequencies. When Type is 'PositiveReal', the default value for Bound (i.e., Y) is 0 . The NominalValue is always $(\gamma+1+2|\gamma|) I$.

All properties of a ultidyn are can be accessed with get and set (although the NominalValue is determined from Type and Bound, and not accessible with set). The properties are

Properties	Meaning	Class	
Name	Internal Name	char	
NominalValue	Nominal value of atom	See above	
Type	'GainBounded ' \|'PositiveReal'	char	
Bound	Norm bound or minimum real	scalar double	
SampleStateDim	State-space dimension of random samples of this uncertain element	scalar double	
AutoSimplify	'off' \| \{'basic '\}	'full'	char

The SampleStateDim property specifies the state dimension of random samples of the atom when using usample. The default value is 1 . The AutoSimplify property serves the same function as in the uncertain real parameter.

You can create a 2-by-3 gain-bounded uncertain linear dynamics atom. Verify its size, and check the properties.

```
f = ultidyn('f',[2 3]);
size(f)
ans =
    2 3
get(f)
    Name: 'f'
    NominalValue: [2x3 double]
            Type: 'GainBounded'
            Bound: 1
    SampleStateDim: 1
        AutoSimplify: 'basic'
```

You can create a 1-by-1 (scalar) positive-real uncertain linear dynamics atom, whose frequency response always has real part greater than -0.5. Set the SampleStateDim property to 5 . View the properties, and plot a Nyquist plot of 30 instances of the atom.

```
    g = ultidyn('g',[1 1],'type','positivereal','bound',-0.5);
    g.SampleStateDim = 5;
    get(g)
        Name: 'g'
        NominalValue: 1.5000
                            Type: 'PositiveReal'
            Bound: -0.5000
        SampleStateDim: 5
            AutoSimplify: 'basic'
    nyquist(usample(g,30))
    xlim([-2 10])
    ylim([-6 6]);
```


Time-Domain of ultidyn Atoms

On its own, every ultidyn atom is interpreted as a continuous-time, system with uncertain behavior, quantified by bounds (gain or real-part) on its frequency response. To see this, create a ultidyn, and view the sample time of several random samples of the atom.

```
h = ultidyn('h',[\begin{array}{ll}{1}&{1]);}\end{array}]={
get(usample(h),'Ts')
ans =
    0
get(usample(h),'Ts')
ans =
    0
get(usample(h),'Ts')
ans =
    0
```

However, when a ultidyn atom is an uncertain element of an uncertain state space model (uss), then the time-domain characteristic of the atom is determined from the time-domain characteristic of the system. The bounds (gain-bounded or positivity) apply to the frequency-response of the atom. This is explained and demonstrated in "Interpreting Uncertainty in Discrete Time" on page 1-31.

Complex Parameter Atoms

The ucomplex atom represents an uncertain complex number, whose value lies in a disc, centered at NominalValue, with radius specified by the Radius property. The size of the disc can also be specified by Percentage, which means the radius is derived from the absolute value of the NominalValue. The properties of ucomplex objects are

Properties	Meaning	Class	
Name	Internal Name	char	
NominalValue	Nominal value of atom	double	
Mode	'Range ' \| 'Percentage '	char	
Radius	Radius of disk	double	
Percentage	Additive variation (percent of Radius)	double	
AutoSimplify	'off' \| \{'basic'\}	'full'	char

The simplest construction requires only a name and nominal value. The default Mode is Radius, and the default radius is 1 .

```
a = ucomplex('a',2-j)
Uncertain Complex Parameter: Name a, NominalValue 2-1i, Radius 1
get(a)
                            Name: 'a'
        NominalValue: 2.0000-1.0000i
            Mode: 'Radius'
            Radius: 1
        Percentage: 44.7214
        AutoSimplify: 'basic'
set(a)
            Name: 'String'
        NominalValue: '1x1 DOUBLE'
            Mode: 'Radius | Percentage'
            Radius: 'scalar DOUBLE'
        Percentage: 'scalar DOUBLE'
    AutoSimplify: '['off' | 'basic' | 'full']'
```

Sample the uncertain complex parameter at 400 values, and plot in the complex plane. Clearly, the samples appear to be from a disc of radius 1 , centered in the complex plane at the value $2-j$.

```
asample = usample(a,400);
plot(asample(:),'o'); xlim([0 4]); ylim([-3 1]);
```


Complex Matrix Atoms

The uncertain complex matrix class, ucomplexm, represents the set of matrices given by the formula

$$
N+W_{L} \Delta W_{R}
$$

where N, W_{L}, and W_{R} are known matrices, and Δ is any complex matrix with $\dot{\bar{\sigma}}(\Delta) \leq 1$. All properties of a ucomplexm are can be accessed with get and set. The properties are

Properties	Meaning	Class
Name	Internal Name	char
NominalValue	Nominal value of atom	double
WL	Left weight	double

Properties	Meaning	Class
WR	Right weight	double
AutoSimplify	'off' \| \{'basic'\} ' 'full' $^{\prime}$	char

The simplest construction requires only a name and nominal value. The default left and right weight matrices are identity.

You can create a 4-by-3 ucomplexm element, and view its properties.

```
m = ucomplexm('m',[1 2 3;4 5 6;7 8 9;10 11 12])
Uncertain Complex Matrix: Name m, 4x3
get(m)
            Name: 'm'
    NominalValue: [4\times3 double]
            WL: [4\times4 double]
            WR: [3\times3 double]
        AutoSimplify: 'basic'
m.NominalValue
ans =
            1 2 3
            4 5 6
            7 8 9
            10}111
m.WL
ans =
\begin{tabular}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
```

Sample the uncertain matrix, and compare to the nominal value. Note the element-by-element sizes of the difference are generally equal, indicative of the default (identity) weighting matrices that are in place.

```
abs(usample(m)-m.NominalValue)
ans =
\begin{tabular}{lll}
0.2948 & 0.1001 & 0.2867 \\
0.3028 & 0.2384 & 0.2508 \\
0.3376 & 0.1260 & 0.2506
\end{tabular}
```

$$
0.2200 \quad 0.3472 \quad 0.1657
$$

Change the left and right weighting matrices, making the uncertainty larger as you move down the rows, and across the columns.

```
m.WL = diag([0.2 0.4 0.8 1.6]);
m.WR = diag([0.1 1 4]);
```

Sample the uncertain matrix, and compare to the nominal value. Note the element-by-element sizes of the difference, and the general trend that the smallest differences are near the $(1,1)$ element, and the largest differences are near the $(4,3)$ element, which is completely expected by choice of the diagonal weighting matrices.

```
abs(usample(m)-m.NominalValue)
ans =
\begin{tabular}{lll}
0.0091 & 0.0860 & 0.2753 \\
0.0057 & 0.1717 & 0.6413 \\
0.0304 & 0.2756 & 1.4012 \\
0.0527 & 0.4099 & 1.8335
\end{tabular}
```


Unstructured Uncertain Dynamic Systems

The unstructured uncertain dynamic system class, udyn, represents completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables (placeholders). All algebraic operations, such as addition, subtraction, multiplication (i.e., cascade) operate properly, and substitution (with usubs) is allowed. However, all of the analysis tools (e.g., robuststab) do not handle these types of uncertain elements. As such, these elements do not provide a significant amount of usability, and their role in the user's guide is small.

You can create a 2 -by- 3 udyn element. Check its size, and properties.

```
m = udyn('m',[2 3])
Uncertain Dynamic System: Name m, size 2x3
size(m)
ans =
    2 3
```

$\operatorname{get}(m)$
Name: 'm'
NominalValue: [2x3 double]
AutoSimplify: 'basic'

Uncertain Matrices

Uncertain matrices (class umat) are built from doubles, and uncertain atoms, using traditional MATLAB matrix building syntax. Uncertain matrices can be added, subtracted, multiplied, inverted, transposed, etc., resulting in uncertain matrices. The rows and columns of an uncertain matrix are referenced in the same manner that MATLAB references rows and columns of an array, using parenthesis, and integer indices. The NominalValue of a uncertain matrix is the result obtained when all uncertain atoms are replaced with their own NominalValue. The uncertain atoms making up a umat are accessible through the Uncertainty gateway, and the properties of each atom within a umat can be changed directly.

Using usubs, specific values may be substituted for any of the uncertain atoms within a umat. The command usample generates a random sample of the uncertain matrix, substituting random samples (within their ranges) for each of the uncertain atoms.

The command wenorm computes tight bounds on the worst-case (maximum over the uncertain elements' ranges) norm of the uncertain matrix.

Standard MATLAB numerical matrices (i.e., double) naturally can be viewed as uncertain matrices without any uncertainty.

Creating Uncertain Matrices from Uncertain Atoms

You can create 2 uncertain real parameters, and then a 3 -by- 2 uncertain matrix using these uncertain atoms.

```
a = ureal('a',3);
b = ureal('b',10,'pe',20);
M = [-a 1/b;b a+1/b;1 3]
UMAT: 3 Rows, 2 Columns
    a: real, nominal = 3, variability = [-1 1], 2 occurrences
    b: real, nominal = 10, variability = [-20 20]%, 3 occurrences
```

The size and class of M are as expected

```
size(M)
ans =
```

```
    3 2
class(M)
ans =
umat
```


Accessing Properties of a umat

Use get to view the accessible properties of a umat.

```
get(M)
    NominalValue: [3x2 double]
        Uncertainty: [1x1 atomlist]
```

The NominalValue is a double, obtained by replacing all uncertain elements with their nominal values.

```
M.NominalValue
ans =
    -3.0000 0.1000
    10.0000 3.1000
        1.0000 3.0000
```

The Uncertainty property is a atomlist object, which is simply a gateway from the umat to the uncertain atoms.

```
class(M.Uncertainty)
ans =
atomlist
M.Uncertainty
    a: [1x1 ureal]
    b: [1x1 ureal]
```

Direct access to the atoms is facilitated through Uncertainty. Check the Range of the uncertain element named 'a' within M, then change it.

```
M.Uncertainty.a.Range
ans =
    2 4
M.Uncertainty.a.Range = [2.5 5];
M
UMAT: 3 Rows, 2 Columns
```

```
a: real, nominal = 3, variability = [-0.5 2], 2 occurrences
b: real, nominal = 10, variability = [-20 20]%, 3 occurrences
```

The change to the uncertain real parameter a only took place within M. Verify that the variable a in the workspace is no longer the same as the variable a within M.

```
isequal(M.Uncertainty.a,a)
ans =
    0
```

Note that combining atoms which have a common internal name, but different properties leads to an error. For instance, subtracting the two atoms gives an error, not 0 .

```
M.Uncertainty.a - a
??? Error using ==> ndlft.lftmask
```

Atoms named 'a' have different properties.

Row and Column Referencing

Standard Row/Column referencing is allowed. Note, however, that single-indexing is only allowed if the umat is a column or a row.

Reconstruct M (if need be), and make a 2 -by- 2 selection from M

```
a = ureal('a',3);
b = ureal('b',10,'pe',20);
M = [-a 1/b;b a+1/b;1 3];
M.Uncertainty.a.Range = [2.5 5];
M(2:3,:)
UMAT: 2 Rows, 2 Columns
    a: real, nominal = 3, variability = [-0.5 2], 1 occurrence
    b: real, nominal = 10, variability = [-20 20]%, 2 occurrences
```

Make a single column selection from M , and use single-index references to access elements of it.

```
h = M([\begin{array}{llll}{2}&{1}&{2}&{3}\end{array}],2)
UMAT: 4 Rows, 1 Columns
```

```
    a: real, nominal = 3, variability = [-0.5 2], 1 occurrence
    b: real, nominal = 10, variability = [-20 20]%, 1 occurrence
h(2)
UMAT: 1 Rows, 1 Columns
    b: real, nominal = 10, variability = [-20 20]%, 1 occurrence
h(3)
UMAT: 1 Rows, 1 Columns
    a: real, nominal = 3, variability = [-0.5 2], 1 occurrence
    b: real, nominal = 10, variability = [-20 20]%, 1 occurrence
```

Finally, make the $(3,2)$ entry of M uncertain.

```
M(3,2) = ureal('c',3,'perc',40)
UMAT: 3 Rows, 2 Columns
    a: real, nominal = 3, variability = [-0.5 2], 2 occurrences
    b: real, nominal = 10, variability = [-20 20]%, 2 occurrences
    c: real, nominal = 3, variability = [-40 40]%, 1 occurrence
```


Matrix Operation on umat Objects

Many matrix operations are allowed, such as matrix-multiply, transpose, and inverse. Combinations of certain (i.e., not uncertain) matrices and uncertain matrices are allowed.

Premultiply M by a 1-by- 3 constant matrix, resulting in a 1-by- 2 umat.

```
M1 = [\begin{array}{lll}{2}&{3}&{1}\end{array}]*M
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 3, variability = [-0.5 2], 1 occurrence
    b: real, nominal = 10, variability = [-20 20]%, 2 occurrences
    c: real, nominal = 3, variability = [-40 40]%, 1 occurrence
```

Verify that the 1st entry of M1 is -2*a + 3*b + 1. Direct subtraction yields a umat without any dependence on uncertain elements. Simplifying the class shows that the result is zero as expected.

```
d = M1(1) - (-2*M.Uncertainty.a + 3*M.Uncertainty.b + 1)
UMAT: 1 Rows, 1 Columns
simplify(d,'class')
ans =
    0
```

Transpose M, form a product, an inverse, and sample the uncertain result. As expected, the result is the 2 -by- 2 identity matrix.

```
H = M.'*M;
K = inv(H);
usample(K*H,3)
ans(:,:,1) =
    1.0000 -0.0000
    -0.0000 1.0000
ans(:,:,2) =
    1.0000 -0.0000
    -0.0000 1.0000
ans(:,:,3) =
    1.0000 -0.0000
    -0.0000 1.0000
```


Substituting for Uncertain Atoms

Uncertain atoms can be substituted for using usubs. For more information, see "Substitution by usubs" on page 1-49. Here, we illustrate a few special cases.

Substitute all instances of the uncertain real parameter named a with the number 4. This results in a umat, with dependence on the uncertain real parameters b and c.

```
M2 = usubs(M,'a',4)
UMAT: 3 Rows, 2 Columns
    b: real, nominal = 10, variability = [-20 20]%, 2 occurrences
    c: real, nominal = 3, variability = [-40 40]%, 1 occurrence
```

Similarly, we can substitute all instances of the uncertain real parameter named b with M . Uncertainty. a , resulting in a umat with dependence on the uncertain real parameters a and c.

```
M3 = usubs(M,'b', M.Uncertainty.a)
UMAT: 3 Rows, 2 Columns
    a: real, nominal = 3, variability = [-0.5 2], 4 occurrences
    c: real, nominal = 3, variability = [-40 40]%, 1 occurrence
Nominal and/or random instances can easily be specified.
```

```
M4 = usubs(M,'a','nominal','b','random')
UMAT: 3 Rows, 2 Columns
    c: real, nominal = 3, variability = [-40 40]%, 1 occurrence
```

If one value is being substituted for many different atoms, the atom names can be listed in a cell array, and then the value given. For example, substitute a and b with the number 4 , and c with the number 5 .

```
M5 = usubs(M,\{'a' 'b'\},4,'c',5)
M5 =
    \(-4.0000 \quad 0.2500\)
    \(4.0000 \quad 4.2500\)
    1.00005 .0000
```

The command usample also generates multiple random instances of a umat (and uss and ufrd). See "Sampling Uncertain Objects" on page 1-45 for details.

Lifting a double matrix to a umat

A not-uncertain matrix may be interpreted as an uncertain matrix that has no dependence on uncertain atoms. Use the umat command to lift a double to the umat class.

```
Md = [1 2 3;4 5 6];
M = umat(Md)
UMAT: 2 Rows, 3 Columns
```

High dimensional double matrices can also be lifted. Note from the display that once the matrix is interpreted as a umat, the third dimension and beyond are interpreted as array dimensions. See "Array Management for Uncertain Objects" on page 1-52 for more information about how multidimensional arrays of uncertain objects are handled.

```
Md = randn(4,5,6);
M = umat(Md)
UMAT: 4 Rows, 5 Columns [array, 6 x 1]
Md = randn(4,5,6,7);
M = umat(Md)
UMAT: 4 Rows, 5 Columns [array, 6 x 7]
Md = randn(4,5,6,7,8);
```

$M=\operatorname{umat}(\mathrm{Md})$
UMAT: 4 Rows, 5 Columns [array, $6 \times 7 \times 8$]

Uncertain State-Space Systems (uss)

Uncertain systems (uss) are linear systems with uncertain state-space matrices and/or uncertain linear dynamics. Like their certain (i.e., not uncertain) counterpart, the ss object, they are often built from state-space matrices using the ss command. In the case where some of the state-space matrices are uncertain, the result will be a uncertain state-space (uss) object.

Combining uncertain systems with uncertain systems (with the feedback command, for example) usually leads to an uncertain system. Not-uncertain systems can be combined with uncertain systems. Usually the result is an uncertain system.

The nominal value of an uncertain system is a ss object, which is familiar to Control System Toolbox software users.

Creating Uncertain Systems

Uncertain systems (class uss) are built from of certain and/or uncertain state-space matrices, usually using the ss command.

In the example below, the A, B and C matrices are made up of uncertain real parameters. Packing them together with the ss command results in a continuous-time uncertain system.

You can create three uncertain real parameters. Then create 3 uncertain matrices A, B and C, and one double matrix D.

```
p1 = ureal('p1',10,'pe',50);
p2 = ureal('p2',3,'plusm',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2;0 -p1];
B = [-p2;p2+p3];
C = [1 0;1 1-p3];
D = [0;0];
```

Pack the 4 matrices together using the ss command. This results in a continuous-time 2 -output, 1 -input, 2 -state uncertain system.

```
sys = ss(A,B,C,D)
```

```
USS: 2 States, 2 Outputs, 1 Input, Continuous System
    p1: real, nominal = 10, variability = [-50 50]%, 2 occurrences
    p2: real, nominal = 3, variability = [-0.5 1.2], 2 occurrences
    p3: real, nominal = 0, variability = [-1 1], 2 occurrences
```


Properties of uss Objects

View the properties with the get command.

```
get(sys)
            a: [2x2 umat]
            b: [2x1 umat]
            c: [2x2 umat]
            d: [2x1 double]
            StateName: {2x1 cell}
                    Ts: 0
        InputName: {''}
        OutputName: {2x1 cell}
        InputGroup: [1x1 struct]
    OutputGroup: [1x1 struct]
    NominalValue: [2x1 ss]
    Uncertainty: [1x1 atomlist]
            Notes: {}
        UserData: []
```

The properties a, b, c, d, and StateName behave in exactly the same manner as Control System Toolbox ss objects. The properties InputName, OutputName, InputGroup and OutputGroup behave in exactly the same manner as all of the Control System Toolbox system objects (ss, zpk, tf, and frd).

The NominalValue is a Control System Toolbox ss object, and hence all methods for ss objects are available. For instance, compute the poles and step response of the nominal system.

```
pole(sys.NominalValue)
ans =
    -10
    -10
step(sys.NominalValue)
```


Just as with the umat class, the Uncertainty property is a atomlist object, acting as a gateway to the uncertain atoms. Direct access to the atoms is facilitated through Uncertainty. Check the Range of the uncertain element named 'p2' within sys, then change its left endpoint.

```
sys.Uncertainty.p2.range
ans =
    2.5000 4.2000
sys.Uncertainty.p2.range(1) = 2;
```


Sampling Uncertain Systems

The command usample randomly samples the uncertain system at a specified number of points.

Randomly sample the uncertain system at 20 points in its modeled uncertainty range. This gives a 20 -by- 1 ss array. Consequently, all analysis tools from Control System Toolbox software are available.

```
manysys = usample(sys,20);
size(manysys)
20x1 array of state-space models
Each model has 2 outputs, 1 input, and 2 states.
```


The command step can be called directly on a uss object. The default behavior samples the uss object at 20 instances, and plots the step responses of these 20 models, as well as the nominal value.

The same features are available for bode, bodemag, impulse, nyquist and step.

Feedback Around an Uncertain Plant

It is possible to form interconnections of uss objects. A common example is to form the feedback interconnection of a given controller with an uncertain plant.

First create the uncertain plant. Start with two uncertain real parameters.

```
gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
```

Next, create an unmodeled dynamics atom, delta, and a 1st order weighting function, whose DC value is 0.2 , high-frequency gain is 10 , and whose crossover frequency is $8 \mathrm{rad} / \mathrm{sec}$.

```
delta = ultidyn('delta',[1 1],'SampleStateDim',5);
W = makeweight(0.2,6,6);
```

Finally, create the uncertain plant consisting of the uncertain parameters and the unmodeled dynamics.

```
P = tf(gamma,[tau 1])*(1+W*delta);
```

You can create an integral controller based on nominal plant parameters. Nominally the closed-loop system will have damping ratio of 0.707 and time constant of 2*tau.

```
KI = 1/(2*tau.Nominal*gamma.Nominal);
C = tf(KI,[11 0]);
```

Create the uncertain closed-loop system using the feedback command.

```
CLP = feedback(P*C,1);
```

Using usample and step, plot samples of the open-loop and closed-loop step responses. As expected the integral controller reduces the variability in the low frequency response.

```
subplot(2,1,1); step(P,5,20)
subplot(2,1,2); step(CLP,5,20)
```


Interpreting Uncertainty in Discrete Time

The interpretation of a ultidyn atom as a continuous-time or discrete-time system depends on the nature of the uncertain system (uss) within which it is an uncertain element.

For example, create a scalar ultidyn object. Then, create two 1 -input, 1 -output uss objects using the ultidyn object as their "D" matrix. In one case, create without specifying sample-time, which indicates continuous time. In the second case, force discrete-time, with a sample time of 0.42.

```
delta = ultidyn('delta',[1 1]);
sys1 = uss([],[],[],delta)
USS: 0 States, 1 Output, 1 Input, Continuous System
    delta: 1x1 LTI, max. gain = 1, 1 occurrence
sys2 = uss([],[],[],delta,0.42)
USS: O States, 1 Output, 1 Input, Discrete System, Ts = 0.42
    delta: 1x1 LTI, max. gain = 1, 1 occurrence
```

Next, get a random sample of each system. When obtaining random samples using usample, the values of the atoms used in the sample are returned in the 2nd argument from usample as a structure.

```
[sys1s,d1v] = usample(sys1);
[sys2s,d2v] = usample(sys2);
```

Look at d1v.delta.Ts and d2v.delta.Ts. In the first case, since sys1 is continuous-time, the system div.delta is continuous-time. In the second case, since sys2 is discrete-time, with sample time 0.42 , the system d2v.delta is discrete-time, with sample time 0.42.

```
d1v.delta.Ts
ans =
    0
d2v.delta.Ts
ans =
    0.4200
```

Finally, in the case of a discrete-time uss object, it is not the case that ultidyn objects are interpreted as continuous-time uncertainty in feedback with sampled-data systems. This very interesting hybrid theory is beyond the scope of the toolbox.

Lifting a ss to a uss

A not-uncertain state space object may be interpreted as an uncertain state space object that has no dependence on uncertain atoms. Use the uss command to "lift" a ss to the uss class.

```
sys = rss(3,2,1);
usys = uss(sys)
USS: 3 States, 2 Outputs, 1 Input, Continuous System
```

Arrays of ss objects can also be lifted. See "Array Management for Uncertain Objects" on page 1-52 for more information about how arrays of uncertain objects are handled.

Handling Delays in uss

In the current implementation, delays are not allowed. Delays are omitted and a warning is displayed when ss objects are lifted to uss objects.

```
sys = rss(3,2,1);
```

```
sys.inputdelay = 1.3;
usys = uss(sys)
Warning: Omitting DELAYs in conversion to USS
> In uss.uss at 103
USS: 3 States, 2 Outputs, 1 Input, Continuous System
```

This lifting process happens in the background whenever ss objects are combined with any uncertain object. Consequently all delays will be lost in such operations.

Use the command pade to approximately preserve the effect of the time delay in the ss object. Before operations involving ss objects containing delays and uncertain objects, use the pade command to convert the ss object to a delay free object.

For example, consider an uncertain system with a time constant approximately equal to 1 , an extra input delay of 0.3 seconds, second-order rolloff beyond $20 \mathrm{rad} / \mathrm{s}$, and an uncertain steady-state gain ranging from 4 to 6. This can be approximated using the pade command, as follows:

```
sys = tf(1,[1 1])*tf(1,[0.05 1]);
sys.inputdelay = 0.3;
gain = ureal('gain',5);
usys = gain*pade(sys,4)
USS: 6 States, 1 Output, 1 Input, Continuous System
    gain: real, nominal = 5, variability = [-1 1], 1 occurrence
```

If gain is multiplied by sys directly, the time delay is unfortunately omitted, since this operation involves lifting sys to a uss as described above. The difference is obvious from the step responses.

```
step(usys,gain*sys,4,5)
Warning: Omitting DELAYs in conversion to USS
> In uss.uss at 103
    In umat.umat at 98
    In atom.mtimes at 7
```


Uncertain frd

Uncertain frequency responses (ufrd) arise naturally when computing the frequency response of an uncertain state-space (uss). They also arise when frequency response data (in an frd object) is combined (added, multiplied, concatenated, etc.) to an uncertain matrix (umat).

Creating Uncertain Frequency Response Objects

The most common manner in which a ufrd arises is taking the frequency response of a uss. The natural command that would do this is frd (an overloaded version in the @uss folder).

Reconstruct sys, if necessary.

```
p1 = ureal('p1',10,'pe',50);
p2 = ureal('p2',3,'plusm',[-.5 1.2]);
p3 = ureal('p3',0);
A = [-p1 p2;0 -p1];
B = [-p2;p2+p3];
C = [1 0;1 1-p3];
D = [0;0];
sys = ss(A,B,C,D)
USS: 2 States, 2 Outputs, 1 Input, Continuous System
    p1: real, nominal = 10, variability = [-50 50]%, 2 occurrences
    p2: real, nominal = 3, variability = [-0.5 1.2], 2 occurrences
    p3: real, nominal = 0, variability = [-1 1], 2 occurrences
```

Compute the uncertain frequency response of the uncertain system. Use the frd command, along with a frequency grid containing 100 points. The result is an uncertain frequency response data object, referred to as a ufrd.

```
sysg = frd(sys,logspace(-2,2,100))
UFRD: 2 Outputs, 1 Input, Continuous System, 100 Frequency points
    p1: real, nominal = 10, variability = [-50 50]%, 2 occurrences
    p2: real, nominal = 3, variability = [-0.5 1.2], 2 occurrences
    p3: real, nominal = 0, variability = [-1 1], 2 occurrences
```


Properties of ufrd Objects

View the properties with the get command.

```
get(sysg)
    Frequency: [100x1 double]
    ResponseData: [2x1x100 umat]
            Units: 'rad/s'
                Ts: 0
            InputName: {''}
            OutputName: {2x1 cell}
            InputGroup: [1x1 struct]
    OutputGroup: [1x1 struct]
NominalValue: [2x1 frd]
    Uncertainty: [1x1 atomlist]
            Notes: {}
            UserData: []
            Version: 4
```

The properties ResponseData and Frequency behave in exactly the same manner as Control System Toolbox frd objects, except that ResponseData is a umat. The properties InputName, OutputName, InputGroup and OutputGroup behave in exactly the same manner as all of the Control System Toolbox system objects (ss, zpk, tf, and frd).

The NominalValue is a Control System Toolbox frd object, and hence all methods for frd objects are available. For instance, plot the Bode response of the nominal system.
bode(sysg.nom)

Just as with the umat and uss classes, the Uncertainty property is an atomlist object, acting as a gateway to the uncertain atoms. Direct access to the atoms is facilitated through Uncertainty. Change the nominal value of the uncertain element named 'p1' within sysg to 14, and replot the Bode plot of the (new) nominal system.

```
sysg.unc.p1.nom = 14
UFRD: 2 Outputs, 1 Input, Continuous System, 100 Frequency points
    p1: real, nominal = 14, variability = [-50 50]%, 2 occurrences
    p2: real, nominal = 3, variability = [-0.5 1.2], 2 occurrences
    p3: real, nominal = 0, variability = [-1 1], 2 occurrences
```


Interpreting Uncertainty in Discrete Time

See "Interpreting Uncertainty in Discrete Time" on page 1-31. The issues are identical.

Lifting an frd to a ufrd

A not-uncertain frequency response object may be interpreted as an uncertain frequency response object that has no dependence on uncertain atoms. Use the ufrd command to "lift" an frd object to the ufrd class.

```
sys = rss(3,2,1);
sysg = frd(sys,logspace(-2,2,100));
usysg = ufrd(sysg)
UFRD: 2 Outputs, 1 Input, Continuous System, 100 Frequency points
```

Arrays of frd objects can also be lifted. See "Array Management for Uncertain Objects" on page 1-52 for more information about how arrays of uncertain objects are handled.

Handling Delays in ufrd

See "Handling Delays in uss" on page 1-32. The issues are identical.

Basic Control System Toolbox and MATLAB Interconnections

This list has all of the basic system interconnection functions defined in Control System Toolbox software or in MATLAB.

- append
- blkdiag
- series
- parallel
- feedback
- lft
- stack

These functions work with uncertain objects as well. Uncertain objects may be combined with certain objects, resulting in an uncertain object.

Simplifying Representation of Uncertain Objects

A minimal realization of the transfer function matrix

$$
H(s)=\left[\begin{array}{cc}
\frac{2}{s+1} & \frac{4}{s+1} \\
\frac{3}{s+1} & \frac{6}{s+1}
\end{array}\right]
$$

has only 1 state, obvious from the decomposition

$$
H(s)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \frac{1}{s+1}\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

However, a "natural" construction, formed by

```
sys11 = ss(tf(2,[1 1]));
sys12 = ss(tf(4,[1 1]));
sys21 = ss(tf(3,[1 1]));
sys22 = ss(tf(6,[1 1]));
sys = [sys11 sys12;sys21 sys22]
a =
\begin{tabular}{lrrrr} 
& x1 & x2 & x3 & x4 \\
x1 & -1 & 0 & 0 & 0 \\
x2 & 0 & -1 & 0 & 0 \\
x3 & 0 & 0 & -1 & 0 \\
x4 & 0 & 0 & 0 & -1
\end{tabular}
b =
            u1 u2
    x1 2 0
    x2 0 2
    x3 2 0
    x4 0
c =
```



```
    y2 0}0
d =
        u1 u2
```

```
        y1 0 0
        y2 0 0
Continuous-time model
```

has four states, and is nonminimal.
In the same manner, the internal representation of uncertain objects built up from uncertain atoms can become nonminimal, depending on the sequence of operations in their construction. The command simplify employs ad-hoc simplification and reduction schemes to reduce the complexity of the representation of uncertain objects. There are three levels of simplification: off, basic and full. Each uncertain atom has an AutoSimplify property whose value is one of the strings 'off', 'basic' or 'full'. The default value is 'basic'.

After (nearly) every operation, the command simplify is automatically run on the uncertain object, cycling through all of the uncertain atoms, and attempting to simplify (without error) the representation of the effect of that uncertain object. The AutoSimplify property of each atom dictates the types of computations that are performed. In the 'off' case, no simplification is even attempted. In 'basic', fairly simple schemes to detect and eliminate nonminimal representations are used. Finally, in 'full', numerical based methods similar to truncated balanced realizations are used, with a very tight tolerance to minimize error.

Effect of the Autosimplify Property

Create an uncertain real parameter, view the AutoSimplify property of a, and then create a 1-by-2 umat, both of whose entries involve the uncertain parameter.

```
a = ureal('a',4);
a.AutoSimplify
ans =
basic
m1 = [a+4 6*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
```

Note that although the uncertain real parameter a appears in both (two) entries of the matrix, the resulting uncertain matrix m 1 only depends on " 1 occurrence" of a.

Set the AutoSimplify property of a to 'off' (from 'basic'). Recreate the 1-by-2 umat. Now note that the resulting uncertain matrix m2 depends on "2 occurrences" of a.

```
a.AutoSimplify = 'off';
m2 = [a+4 6*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

The 'basic' level of autosimplification often detects (and simplifies) duplication created by linear terms in the various entries. Higher order (quadratic, bilinear, etc.) duplication is often not detected by the 'basic' autosimplify level.

For example, reset the AutoSimplify property of a to 'basic' (from 'off'). Create an uncertain real parameter, and a 1-by-2 umat, both of whose entries involve the square of the uncertain parameter.

```
a.AutoSimplify = 'basic';
m3 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 4 occurrences
```

Note that the resulting uncertain matrix m3 depends on " 4 occurrences" of a.
Set the AutoSimplify property of a to 'full' (from 'basic'). Recreate the 1 -by- 2 umat. Now note that the resulting uncertain matrix m4 depends on " 2 occurrences" of a.

```
a.AutoSimplify = 'full';
m4 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

Although m4 has a less complex representation (2 occurrences of a rather than 4 as in m 3), some numerical variations are seen when both uncertain objects are evaluated at (say) 0 .

```
usubs(m3,'a',0)
ans =
    0 0
usubs(m4,'a',0)
ans =
    1.0e-015 *
        -0.4441 0
```

Small numerical differences are also noted at other evaluation points. The example below shows the differences encountered evaluating at a equal to 1 .

```
usubs(m3,'a',1)
ans =
    5 6
usubs(m4,'a',1)
ans =
    5.0000 6.0000
```


Direct Use of simplify

The simplify command can be used to override all uncertain element's AutoSimplify property. The first input to the simplify command is an uncertain object. The second input is the desired reduction technique, which can either 'basic' or 'full'.

Again create an uncertain real parameter, and a 1-by-2 umat, both of whose entries involve the square of the uncertain parameter. Set the AutoSimplify property of a to 'basic'.

```
a.AutoSimplify = 'basic';
m3 = [a*(a+4) 6*a*a]
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 4 occurrences
```

Note that the resulting uncertain matrix m3 depends on four occurrences of a.

The simplify command can be used to perform a 'full' reduction on the resulting umat.

```
m4 = simplify(m3,'full')
UMAT: 1 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

The resulting uncertain matrix m4 depends on only two occurrences of a after the reduction.

Sampling Uncertain Objects

The command usample is used to randomly sample an uncertain object, giving a not-uncertain instance of the uncertain object.

Generating One Sample

If A is an uncertain object, then usample (A) generates a single sample of A.
For example, a sample of a ureal is a scalar double.

```
A = ureal('A',6);
B = usample(A)
B =
    5.7298
```

Create a 1-by-3 umat with A and an uncertain complex parameter C. A single sample of this umat is a 1-by- 3 double.

```
C = ucomplex('C',2+6j);
M = [A C A*A];
usample(M)
ans =
    5.9785 1.4375 + 6.0290i 35.7428
```


Generating Many Samples

If A is an uncertain object, then usample (A, N) generates N samples of A.
For example, 20 samples of a ureal gives a 1-by-1-20 double array.

```
B = usample(A,20);
size(B)
ans =
    1 1 20
```

Similarly, 30 samples of the 1-by- 3 umat M yields a 1-by-3-by-30 array.

```
size(usample(M,30))
ans =
    1 3 30
```

See "Creating Arrays with usample" on page 1-57 for more information on sampling uncertain objects.

Sampling ultidyn Atoms

When sampling a ultidyn atom (or an uncertain object that contains a ultidyn atom in its Uncertainty gateway) the result is always a state-space (ss) object. The property SampleStateDim of the ultidyn class determines the state dimension of the samples.

Create a 1-by-1, gain bounded ultidyn object, with gain-bound 3. Verify that the default state dimension for samples is 1 .

```
del = ultidyn('del',[1 1],'Bound',3);
del.SampleStateDim
ans =
    1
```

Sample the uncertain atom at 30 points. Verify that this creates a 30 -by- 1 ss array of 1 -input, 1 -output, 1 -state systems.

```
delS = usample(del,30);
size(delS)
30x1 array of state-space models
Each model has 1 output, 1 input, and 1 state.
```

Plot the Nyquist plot of these samples and add a disk of radius 3. Note that the gain bound is satisfied and that the Nyquist plots are all circles, indicative of 1 st order systems.

```
nyquist(delS)
hold on;
theta = linspace(-pi,pi);
plot(del.Bound*exp(sqrt(-1)*theta),'r');
hold off;
```


Change the SampleStateDim to 4, and repeat entire procedure. The Nyquist plots satisfy the gain bound and as expected are more complex than the circles found in the 1st-order sampling.

```
del.SampleStateDim = 4;
delS = usample(del,30);
nyquist(delS)
hold on;
theta = linspace(-pi,pi);
plot(del.Bound*exp(sqrt(-1)*theta),'r');
hold off;
```


Substitution by usubs

If an uncertain object (umat, uss, ufrd) has many uncertain parameters, it is often necessary to freeze some, but not all, of the uncertain parameters to specific values. The usubs command accomplishes this, and also allows more complicated substitutions for an atom.
usubs accepts a list of atom names, and respective values to substitute for them. You can create three uncertain real parameters and use them to create a 2-by-2 uncertain matrix A.

```
delta = ureal('delta',2);
eta = ureal('eta',6);
rho = ureal('rho',-1);
A = [3+delta+eta delta/eta;7+rho rho+delta*eta]
UMAT: 2 Rows, 2 Columns
    delta: real, nominal = 2, variability = [-1 1], 2 occurrences
    eta: real, nominal = 6, variability = [-1 1], 3 occurrences
    rho: real, nominal = -1, variability = [-1 1], 1 occurrence
```

Use usubs to substitute the uncertain element named delta in A with the value 2.3 , leaving all other uncertain atoms intact. Note that the result, B, is an uncertain matrix with dependence only on eta and rho.

```
B = usubs(A,'delta',2.3)
UMAT: 2 Rows, 2 Columns
    eta: real, nominal = 6, variability = [-1 1], 3 occurrences
    rho: real, nominal = -1, variability = [-1 1], 1 occurrence
```

To set multiple atoms, list individually, or in cells. The following are the same

```
B1 = usubs(A,'delta',2.3,'eta',A.Uncertainty.rho);
B2 = usubs(A,{'delta';'eta'},{2.3;A.Uncertainty.rho});
```

In each case, delta is replaced by 2.3 , and eta is replaced by A.Uncertainty.rho.

If it makes sense, a single replacement value can be used to replace multiple atoms. So

```
B3 = usubs(A,{'delta';'eta'},2.3);
```

replaces both the atoms delta and eta with the real number 2.3. Any superfluous substitution requests are ignored. Hence

```
B4 = usubs(A,'fred',5);
```

is the same as A, and

```
B5 = usubs(A,{'delta';'eta'},2.3,{'fred' 'gamma'},0);
```

is the same as B3.

Specifying the Substitution with Structures

An alternative syntax for usubs is to specify the substituted values in a structure, whose fieldnames are the names of the atoms being substituted with values.

Create a structure NV with 2 fields, delta and eta. Set the values of these fields to be the desired substituted values. Then perform the substitution with usubs.

```
NV.delta = 2.3;
NV.eta = A.Uncertainty.rho;
B6 = usubs(A,NV);
```

Here, B6 is the same as B1 and B2 above. Again, any superfluous fields are ignored. Therefore, adding an additional field gamma to NV, and substituting does not alter the result.

```
NV.gamma = 0;
B7 = usubs(A,NV);
```

Here, B7 is the same as B6.
The commands wcgain, robuststab and usample all return substitutable values in this structure format. More discussion can be found in "Creating Arrays with usubs" on page 1-58.

Nominal and Random Values

If the replacement value is the (partial and case-independent) string 'Nominal', then the listed atom are replaced with their nominal values. Therefore

```
B8 = usubs(A,fieldnames(A.Uncertainty),'nom')
B8 =
    11.0000 0.3333
    6.0000 11.0000
B9 = A.NominalValue
B9 =
    11.0000 0.3333
    6.0000 11.0000
```

are the same. It is possible to only set some of the atoms to NominalValues, and would be the typical use of usubs with the 'nominal' argument.

Within A, set eta to its nominal value, delta to a random value (within its range) and rho to a specific value, say 6.5

```
B10 = usubs(A,'eta','nom','delta','rand','rho',6.5)
B10 =
    10.5183 0.2531
    13.5000 15.6100
```

Unfortunately, the 'nominal' and 'Random' specifiers may not be used in the structure format. However, explicitly setting a field of the structure to an atom's nominal value, and then following (or preceeding) the call to usubs with a call to usample (to generate the random samples) is acceptable, and achieves the same effect.

Array Management for Uncertain Objects

All of the uncertain system classes (uss, ufrd) may be multidimensional arrays. This is intended to provide the same functionality as the LTI-arrays of the Control System Toolbox software. The command size returns a row vector with the sizes of all dimensions.

The first two dimensions correspond to the outputs and inputs of the system. Any dimensions beyond are referred to as the array dimensions. Hence, if szM $=\operatorname{size}(M)$, then $\operatorname{szM}(3$:end) are sizes of the array dimensions of M.

For these types of objects, it is clear that the first two dimensions (system output and input) are interpreted differently from the 3rd, 4th, 5th and higher dimensions (which often model parametrized variability in the system input/output behavior).
umat objects are treated in the same manner. The first two dimensions are the rows and columns of the uncertain matrix. Any dimensions beyond are the array dimensions.

Referencing Arrays

Suppose M is a umat, uss or ufrd, and that Yidx and Uidx are vectors of integers. Then
M(Yidx,Uidx)
selects the outputs (rows) referred to by Yidx and the inputs (columns) referred to by Uidx, preserving all of the array dimensions. For example, if size (M) equals [$\left.\begin{array}{llll}4 & 5 & 3 & 6\end{array}\right]$, then (for example) the size of $M\left(\left[\begin{array}{ll}4 & 2\end{array}\right],\left[\begin{array}{ll}1 & 2\end{array}\right.\right.$ 4]) is [2 $\left.3 \begin{array}{lll}2 & 6 & 7\end{array}\right]$.

If size $(M, 1)==1$ or size $(M, 2)==1$, then single indexing on the inputs or outputs (rows or columns) is allowed. If Sidx is a vector of integers, then M (Sidx) selects the corresponding elements. All array dimensions are preserved.

If there are K array dimensions, and idx1, idx2, ..., idxK are vectors of integers, then

$$
G=M(Y i d x, U i d x, i d x 1, i d x 2, \ldots, i d x K)
$$

selects the outputs and inputs referred to by Yidx and Uidx, respectively, and selects from each array dimension the "slices" referred to by the idx1, idx2,..., idxK index vectors. Consequently, size(G,1) equals length(Yidx), size(G,2) equals length(Uidx), size(G,3) equals length(idx1), size(G,4) equals length(idx2), and size(G,K+2) equals length(idxK).

If M has K array dimensions, and less than K index vectors are used in doing the array referencing, then the MATLAB convention for single indexing is followed. For instance, suppose size(M) equals [$\left.\begin{array}{llllll}3 & 4 & 6 & 5 & 7 & 4\end{array}\right]$. The expression

$$
G=M\left(\left[\begin{array}{ll}
1 & 3
\end{array}\right],\left[\begin{array}{ll}
1 & 4
\end{array}\right],\left[\begin{array}{lll}
2 & 3 & 4
\end{array}\right],\left[\begin{array}{lll}
5 & 3 & 1
\end{array}\right],\left[\begin{array}{lllllll}
8 & 10 & 12 & 2 & 4 & 20 & 18
\end{array}\right]\right)
$$

is valid. The result has size (G) equals [$\left.\begin{array}{lllll}2 & 2 & 3 & 3 & 7\end{array}\right]$. The last index vector $\left[\begin{array}{lllllll}8 & 10 & 12 & 2 & 4 & 20 & 18\end{array}\right]$ is used to reference into the 7-by-4 array, preserving the order dictated by MATLAB single indexing (e.g., the 10th element of a 7 -by- 4 array is the element in the $(3,2)$ position in the array).

Note that if M has either one output (row) or one input (column), and M has array dimensions, then it is not allowable to combine single indexing in the output/input dimensions along with indexing in the array dimensions. This will result in an ambiguity in how to interpret the second index vector in the expression (i.e., "does it correspond to the input/output reference, or does it correspond to the first array dimension?").

Creating Arrays with stack and cat Functions

An easy manner to create an array is with stack. Create a [4-by-1] umat array by stacking four 1-by-3 umat objects with the stack command. The first argument of stack specifies in which array dimension the stacking occurs. In the example below, the stacking is done is the 1st array dimension, hence the result is a 1 -by- 3 -by- 4 -by- 1 umat, referred to as a 4 -by- 1 umat array.

```
a = ureal('a',4);
b = ureal('b',2);
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0])
UMAT: 1 Rows, 3 Columns [array, 4 x 1]
```

```
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
    b: real, nominal = 2, variability = [-1 1], 1 occurrence
size(M)
ans =
    1 3 4
arraysize(M)
ans =
    4
```

Check that result is valid. Use referencing to access parts of the [4-by-1] umat array and compare to the expected values. The first 4 examples should all be arrays full of 0 (zeros). The last two should be the value 5 , and the uncertain real parameter a, respectively.

```
simplify(M(:,:,1) - [a b 1])
ans =
    0 0 0
simplify(M(:,:,2) - [-a -b 4+a])
ans =
    0 0 0
simplify(M(:,:,3) - [4 5 6])
ans =
    0 0 0
simplify(M(:,:,4) - [a 0 0])
ans =
    0 0 0
simplify(M(1,2,3)) % should be 5
ans =
    5
simplify(M(1,3,2)-4)
Uncertain Real Parameter: Name a, NominalValue 4, variability = [-1 1]
```

You can create a random 1-by-3-by-4 double matrix and stack this with M along the second array dimension, creating a 1-by-3-by-4-by-2 umat.

```
N = randn(1,3,4);
M2 = stack(2,M,N);
size(M2)
ans =
    1 3 4 2
```

```
arraysize(M2)
ans =
    4 2
```

As expected, both M and N can be recovered from M2.

```
d1 = simplify(M2(:,:,:,1)-M);
d2 = simplify(M2(:,:,:,2)-N);
[max(abs(d1(:))) max(abs(d2(:)))]
ans =
    0
```

It is also possible to stack M and N along the 1st array dimension, creating a 1-by-3-by-8-by-1 umat.

```
M3 = stack(1,M,N);
size(M3)
ans =
    1 3 8
arraysize(M3)
ans =
    8 1
```

As expected, both M and N can be recovered from M3.

```
d3 = simplify(M3(:,:,1:4)-M);
d4 = simplify(M3(:,:,5:8)-N);
[max(abs(d3(:))) max(abs(d4(:)))]
ans =
    0
```


Creating Arrays by Assignment

Arrays can be created by direct assignment. As with other MATLAB classes, there is no need to preallocate the variable first. Simply assign elements - all resizing is performed automatically.

For instance, an equivalent construction to

```
a = ureal('a',4);
b = ureal('b',2);
```

```
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a O 0]);
is
Mequiv(1,1,1) = a;
Mequiv(1,2,1) = b;
Mequiv(1,3,1) = 1;
Mequiv(1,:,4) = [a 0 0];
Mequiv(1,:,2:3) = stack(1,[-a -b 4+a],[4 5 6]);
```

The easiest manner for you to verify that the results are the same is to subtract and simplify,

```
d5 = simplify(M-Mequiv);
max(abs(d5(:)))
ans =
    0
```


Binary Operations with Arrays

Most operations simply cycle through the array dimensions, doing pointwise operations. Assume A and B are umat (or uss, or ufrd) arrays with identical array dimensions (slot 3 and beyond). The operation $C=f \operatorname{cn}(A, B)$ is equivalent to looping on k1, k2, ..., setting

$$
C(:,:, k 1, k 2, \ldots)=\operatorname{fcn}(A(:,:, k 1, k 2, \ldots), B(:,:, k 1, k 2, \ldots))
$$

The result C has the same array dimensions as A and B. The user is required to manage the extra dimensions (i.e., keep track of what they mean). Methods such as permute, squeeze and reshape are included to facilitate this management.

In general, any binary operation requires that the extra-dimensions are compatible. The umat, uss and ufrd objects allow for slightly more flexible interpretation of this. For illustrative purposes, consider a binary operation involving variables A and B. Suppose the array dimensions of A are
$n_{1} \times \ldots \times n_{l_{A}}$ and that the array dimensions of B are $m_{1} \times \ldots \times m_{l_{B}}$. By MATLAB convention, the infinite number of singleton (i.e., 1) trailing dimensions are not listed. The compatibility of the extra dimensions is determined by the following rule: If $l A=l B$, then pad the shorter dimension list with trailing 1's. Now compare the extra dimensions: In the k-th dimension, it must be that one of 3 conditions hold: $n k=m k$, or $n k=1$, or $m k=1$. In other words,
non-singleton dimensions must exactly match (so that the pointwise operation can be executed), and singleton dimensions match with anything, implicitly through a repmat.

Creating Arrays with usample

An extremely common manner in which to generate an array is to sample (in some of the uncertain elements) an uncertain object. Using the ureal objects a and b from above, create a 2 -by- 3 umat.

```
M = [a b;b*b a/b;1-b 1+a*b]
UMAT: 3 Rows, 2 Columns
    a: real, nominal = 4, variability = [-1 1], 3 occurrences
    b: real, nominal = 2, variability = [-1 1], 6 occurrences
size(M)
ans =
    3 2
```

Sample (at 20 random points within its range) the uncertain real parameter b in the matrix M. This results in a 3-by-2-by-20 umat, with only one uncertain element, a The uncertain element b of M has been "sampled out", leaving a new array dimension in its place.

```
[Ms,bvalues] = usample(M,'b',20);
Ms
UMAT: 3 Rows, 2 Columns [array, 20 x 1]
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
size(Ms)
ans =
    3 2 20
```

Continue sampling (at 15 random points within its range) the uncertain real parameter a in the matrix Ms. This results in a 3 -by-2-by-20-by- 15 double.

```
[Mss,avalues] = usample(Ms,'a',15);
size(Mss)
ans =
    3 2 20 15
class(Mss)
ans =
double
```

The above 2 -step sequence can be performed in 1 step,

```
[Mss,values] = usample(M,'b',20,'a',15);
class(Mss)
ans =
double
```

In this case, values is a 20 -by- 15 struct array, with 2 fields b and a, whose values are the values used in the random sampling. It follows that usubs (M, values) is the same as Mss.

Rather than sampling the each variable (a and b) independently, generating a 20 -by- 15 grid in a 2 -dimensional space, the two-dimensional space can be sampled. Sample the 2 -dimensional space with 800 points,

```
[Ms,values] = usample(M,{'a' 'b'},800);
size(Ms)
ans =
    3 2 800
size(values)
ans =
    800 1
```


Creating Arrays with usubs

Suppose Values is a struct array, with the following properties: the dimensions of Value match the array dimensions of M, as described in "Creating Arrays with usample" on page 1-57; the field names of Values are some (or all) of the names of the uncertain elements of M ; and the dimensions of the contents of the fields within Values match the sizes of the uncertain elements within M. Then usubs (M, Values) will substitute the uncertain elements in M with the contents found in the respective fields of Values.

You can create a 3-by-2 uncertain matrix using two uncertain real parameters.

```
a = ureal('a',4);
b = ureal('b',2);
M = [a b;b*b a/b;1-b 1+a*b];
```

Create a 5 -by- 1 struct array with field name a. Make its values random scalars. Create a 1-by-4 struct array with field name b.

```
Avalue = struct('a',num2cell(rand(5,1)));
Bvalue = struct('b',num2cell(rand(1,4)));
```

Substitute the uncertain real parameter a in M with the values in Avalue, yielding ma. Similarly substitute the uncertain real parameter b in M with the values in Avalue, yielding mb.

```
ma = usubs(M,Avalue)
UMAT: 3 Rows, 2 Columns [array, 5 x 1]
    b: real, nominal = 2, variability = [-1 1], 6 occurrences
mb = usubs(M,Bvalue)
UMAT: 3 Rows, 2 Columns [array, 1 x 4]
    a: real, nominal = 4, variability = [-1 1], 2 occurrences
```

Continue, substituting the uncertain real parameter b in ma with the values in Bvalue, yielding mab. Do the analogous operation for mb, yielding mba. Subtract, and note that the difference is 0, as expected.

```
mab = usubs(ma,Bvalue);
mba = usubs(mb,Avalue);
thediff = mab-mba;
max(abs(thediff(:)))
ans =
    4.4409e-016
```


Creating Arrays with gridureal

The command gridureal enables uniform sampling of specified uncertain real parameters within an uncertain object. It is a specialized case of usubs.
gridureal removes a specified uncertain real parameter and adds an array dimension (to the end of the existing array dimensions). The new array dimension represents the uniform samples of the uncertain object in the specified uncertain real parameter range.

Create a 2 -by-2 uncertain matrix with three uncertain real parameters.

```
a = ureal('a',3,'Range',[2.5 4]);
```

```
b = ureal('b',4,'Percentage',15);
c = ureal('c',-2,'Plusminus',[-1 .3]);
M = [a b;b c]
UMAT: 2 Rows, 2 Columns
    a: real, nominal = 3, range = [2.5 4], 1 occurrence
    b: real, nominal = 4, variability = [-15 15]%, 2 occurrences
    c: real, nominal = -2, variability = [-1 0.3], 1 occurrence
```

Grid the uncertain real parameter b in M with 100 points. The result is a umat array, with dependence on uncertain real parameters a and c.

```
Mgrid1 = gridureal(M,'b',100)
UMAT: 2 Rows, 2 Columns [array, 100 x 1]
    a: real, nominal = 3, range = [2.5 4], 1 occurrence
    c: real, nominal = -2, variability = [-1 0.3], 1 occurrence
```

Operating on the uncertain matrix M , grid the uncertain real parameter a with 20 points, the uncertain real parameter b with 12 points, and the uncertain real parameter c with 7 points, The result is a 2 -by- 2 -by 20 -by-12-by 7 double array.

```
Mgrid3 = gridureal(M,'a',20,'b',12,'c',7);
size(Mgrid3)
ans =
    2 
```


Creating Arrays with repmat

The MATLAB command repmat is used to replicate and tile arrays. It works on the built-in objects of MATLAB, namely double, char, as well as the generalized container objects cell and struct. The identical functionality is provided for replicating and tiling uncertain elements (ureal, ultidyn, etc.) and umat objects.

You can create an uncertain real parameter, and replicate it in a 2-by-3 uncertain matrix. Compare to generating the same uncertain matrix through multiplication.

```
a = ureal('a',5);
Amat = repmat(a,[2 3])
UMAT: 2 Rows, 3 Columns
```

```
    a: real, nominal = 5, variability = [-1 1], 1 occurrence
Amat2 = a*ones(2,3);
simplify(Amat-Amat2)
ans =
\begin{tabular}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
```

Create a [4-by-1] umat array by stacking four 1-by-3 umat objects with the stack command. Use repmat to tile this 1-by-3-by-4-by-1 umat, into a 2 -by-3-by-8-by-5 umat.

```
a = ureal('a',4);
b = ureal('b',2);
M = stack(1,[a b 1],[-a -b 4+a],[4 5 6],[a 0 0]);
size(M)
ans =
    1 3 4
Mtiled = repmat(M,[2 1 2 5])
UMAT: 2 Rows, 3 Columns [array, 8 x 5]
    a: real, nominal = 4, variability = [-1 1], 1 occurrence
    b: real, nominal = 2, variability = [-1 1], 1 occurrence
Verify the equality of M and a few certain tiles of Mtiled.
d1 = simplify(M-Mtiled(2,:,5:8,3));
d2 = simplify(M-Mtiled(1,:,1:4,2));
d3 = simplify(M-Mtiled(2,:,1:4,5));
[max(abs(d1(:))) max(abs(d2(:))) max(abs(d3(:)))]
ans =
    0 0 0
```

Note that repmat never increases the complexity of the representation of an uncertain object. The number of occurrences of each uncertain element remains the same, regardless of the extent of the replication and tiling.

Creating Arrays with repsys

Replicating and tiling uncertain state-space systems (uss, and uncertain frequency response data (ufrd) is done with repsys. The syntax and behavior are the same as the manner in which repmat is used to replicate and tile matrices. The syntax and behavior of repsys for uss and ufrd objects are the
same as the traditional repsys which operates on ss and frd objects. Just as in those cases, the uncertain version of repsys also allows for diagonal tiling.

Using permute and ipermute

The commands permute and ipermute are generalizations of transpose, which exchanges the rows and columns of a two-dimensional matrix.
permute (A, ORDER) rearranges the dimensions of A so that they are in the order specified by the vector ORDER. The array produced has the same values of A but the order of the subscripts needed to access any particular element are rearranged as specified by ORDER. The elements of ORDER must be a rearrangement of the numbers from 1 to N.

All of the uncertain objects are essentially 2 -dimensional (output and input) operators with array dependence. This means that the first 2 dimensions are treated differently from dimensions 3 and beyond. It is not permissible to permute across these groups.

For uss and ufrd, the restriction is built into the syntax. The elements of the ORDER vector only refer to array dimensions. Therefore, there is no possibility of permute across these dimensions. In you need to permute the first two dimensions, use the command transpose instead.

For umat, the restriction is enforced in the software. The elements of the ORDER vector refer to all dimensions. However, the first two elements of ORDER must be a rearrangement of the numbers 1 and 2 . The remaining elements of ORDER must be a rearrangement of the numbers 3 through N . If either of those conditions fail, an error is generated. Hence, for umat arrays, either permute or transpose can be used to effect the transpose operation.

Decomposing Uncertain Objects (for Advanced Users)

Each uncertain object (umat, uss, ufrd) is a generalized feedback connection (lft) of a not-uncertain object (e.g., double, ss, frd) with a diagonal augmentation of uncertain atoms (ureal, ultidyn, ucomplex, ucomplexm, udyn). In robust control jargon, if the uncertain elements are normalized, this decomposition is often called "the M/D form."

The purpose of the uncertain objects (ureal, ultidyn, umat, uss, etc.) is to hide this underlying decomposition, and allow the user to focus on modeling and analyzing uncertain systems, rather than the details of correctly propagating the M/D representation in manipulations. Nevertheless, advanced users may want access to the familiar M/D form. The command lftdata accomplishes this decomposition.

Since ureal, ucomplex and ucomplexm do not have their NominalValue necessarily at zero, and in the case of ureal objects, are not symmetric about the NominalValue, some details are required in describing the decomposition.

Normalizing Functions for Uncertain Atoms

Associated with each uncertain element is a normalizing function. The normalizing function maps the uncertain element into a normalized uncertain element.

If ρ is an uncertain real parameter, with range [L R] and nominal value N, then the normalizing function F is

$$
F(\rho)=\frac{A+B \rho}{C+D \rho}
$$

with the property that for all ρ satisfying $L \leq \rho \leq R$, it follows that $-1 \leq F(\rho) \leq 1$, moreover, $F(L)=-1, F(N)=0$, and $F(R)=1$. If the nominal value is centered in the range, then it is easy to conclude that

$$
\begin{aligned}
& A=\frac{R+L}{R-L} \\
& B=\frac{2}{R-L} \\
& C=1 \\
& D=0 .
\end{aligned}
$$

It is left as an algebra exercise for the user to work out the various values for A, B, C and D when the nominal value is not centered.

If E is an uncertain gain-bounded, linear, time-invariant dynamic uncertainty, with gain-bound B, then the normalizing function F is

$$
F(E)=\frac{1}{\beta} E .
$$

If E is an uncertain positive-real, linear, time-invariant dynamic uncertainty, with positivity bound B, then the normalizing function F is

$$
F(E)=\left[I-\alpha\left(E-\frac{\beta}{2} I\right)\right]\left[I+\alpha\left(E-\frac{\beta}{2} I\right)\right]^{-1}
$$

where $\alpha=2|\beta|+1$.
The normalizing function for an uncertain complex parameter ξ, with nominal value C and radius γ, is

$$
F(\xi)=\frac{1}{\gamma}(\xi-C) .
$$

The normalizing function for uncertain complex matrices H, with nominal value N and weights W_{L} and W_{R} is

$$
F(H)=W_{L}^{-1}(H-N) W_{R}^{-1}
$$

In each case, as the uncertain atom varies over its range, the absolute value of the normalizing function (or norm, in the matrix case) varies from 0 and 1.

Properties of the Decomposition

Take an uncertain object A, dependent on uncertain real parameters $\rho_{1}, \ldots, \rho_{N}$, uncertain complex parameters ξ_{1}, \ldots, ξ_{K}, uncertain complex matrices H_{1}, \ldots, H_{B}, uncertain gain-bounded linear, time-invariant dynamics E_{1}, \ldots, E_{D}, and uncertain positive-real linear, time-invariant dynamics P_{1}, \ldots, P_{Q}.

Write $A(\rho, \xi, H, E, P)$ to indicate this dependence. Using lftdata, A can be decomposed into two separate pieces: M and $\Delta(\rho, \xi, H, E, P)$ with the following properties:

- M is certain (i.e., if A is uss, then M is ss; if A is umat, then M is double; if A is ufrd, then M is frd).
- Δ is always a umat, depending on the same uncertain elements as A, with ranges, bounds, weights, etc., unaltered.
- The form of Δ is block diagonal, with elements made up of the normalizing functions acting on the individual uncertain elements:

$$
\Delta(\rho, \xi, H, E, P)=\left[\begin{array}{ccccc}
F(\rho) & 0 & 0 & 0 & 0 \\
0 & F(\xi) & 0 & 0 & 0 \\
0 & 0 & F(H) & 0 & 0 \\
0 & 0 & 0 & F(E) & 0 \\
0 & 0 & 0 & 0 & F(P)
\end{array}\right] .
$$

- $A(\rho, \zeta, H, E, P)$ is given by a linear fractional transformation of M and $\Delta(\rho, \xi, H, E, P)$,

$$
A(\rho, \xi)=M_{22}+M_{21} \Delta(\rho, \xi, H, E, P)\left[I-M_{11} \Delta(\rho, \xi, H, E, P)\right]^{-1} M_{12}
$$

The order of the normalized atoms making up A is not the simple order shown above. It is actually the same order as given by the command fieldnames (M.Uncertainty). See "Advanced Syntax of lftdata" on page 1-68 for more information.

Syntax of Iftdata

The decomposition is carried out by the command lftdata.
You can create a 2 -by-2 umat named A using three uncertain real parameters.

```
delta = ureal('delta',2);
eta = ureal('eta',6);
rho = ureal('rho',-1);
A = [3+delta+eta delta/eta;7+rho rho+delta*eta]
UMAT: 2 Rows, 2 Columns
    delta: real, nominal = 2, variability = [-1 1], 2 occurrences
    eta: real, nominal = 6, variability = [-1 1], 3 occurrences
    rho: real, nominal = -1, variability = [-1 1], 1 occurrence
```

Note that A depends on two occurrences of delta, three occurrences of eta and one occurrence of rho.

Decompose A into M and Delta. Note that A is a double, and Delta has the same uncertainty dependence as M.

```
[M,Delta] = lftdata(A);
class(M)
ans =
double
Delta
UMAT: 6 Rows, 6 Columns
    delta: real, nominal = 2, variability = [-1 1], 2 occurrences
        eta: real, nominal = 6, variability = [-1 1], 3 occurrences
        rho: real, nominal = -1, variability = [-1 1], 1 occurrence
```

Sample Delta at 5 points. Things to note are:

- It is diagonal.
- The values range between -1 and 1 .
- There are three independent values, and duplication of the entries is consistent with the dependence of Delta and A on the three uncertain real parameters.

```
usample(Delta,5)
```

-0.7106	0	0	0	0	0
0	-0.7106	0	0	0	0
0	0	0.6374	0	0	0
0	0	0	0.6374	0	0
0	0	0	0	0.6374	0
0	0	0	0	0	-0.1258
ans(:, :, 2) =					
-0.5850	0	0	0	0	0
0	-0.5850	0	0	0	0
0	0	-0.3021	0	0	0
0	0	0	-0.3021	0	0
0	0	0	0	-0.3021	0
0	0	0	0	0	0.0803
ans(:, :, 3) =					
0.7013	0	0	0	0	0
0	0.7013	0	0	0	0
0	0	-0.6749	0	0	0
0	0	0	-0.6749	0	0
0	0	0	0	-0.6749	0
0	0	0	0	0	0.3967
ans(:,:,4) =					
0.4262	0	0	0	0	0
0	0.4262	0	0	0	0
0	0	0.0795	0	0	0
0	0	0	0.0795	0	0
0	0	0	0	0.0795	0
0	0	0	0	0	-0.9959
ans(:, :,5) =					
-0.8392	0	0	0	0	0
0	-0.8392	0	0	0	0
0	0	0.8467	0	0	0
0	0	0	0.8467	0	0
0	0	0	0	0.8467	0
0	0	0	0	0	0.6732

In fact, verify that the maximum gain of Delta is indeed 1

```
maxnorm = wcnorm(Delta)
maxnorm =
```

```
LowerBound: 1.0000
UpperBound: 1.0004
```

Finally, verify that lft(Delta,M) is the same as A Subtract (and use the 'full' option in simplify)

```
simplify(lft(Delta,M)-A,'full')
ans =
    0
    0
```


Advanced Syntax of Iftdata

Even for the advanced user, the variable Delta will actually not be that useful, as it is still a complex object. On the other hand, its internal structure is described completely using a 3rd (and 4th) output argument.

```
[M,Delta,BlkStruct,NormUnc] = lftdata(A);
```

The rows of BlkStruct correspond to the uncertain atoms named in fieldnames (A.Uncertainty). Note that the range/bound information about each uncertain atom is not included in BlkStruct.

The elements of BlkStruct describe the size, type and number-of-copies of the uncertain atoms in A, and implicitly delineate the exact block-diagonal structure of Delta. Note that the range/bound information about each uncertain atom is not included in BlkStruct.

BlkStruct(1)
ans =
Name: 'delta'
Size: [11]
Type: 'ureal'
Occurrences: 2
BlkStruct (2)
ans =
Name: 'eta'
Size: [11]
Type: 'ureal'
Occurrences: 3
BlkStruct (3)

```
ans =
            Name: 'rho'
            Size: [1 1]
            Type: 'ureal'
Occurrences: 1
```

Together, these mean Delta is a block diagonal augmentation of the normalized version of 3 uncertain atoms.

The first atom is named 'delta'. It is 1-by-1; it is of class ureal; and there are 2 copies diagonally augmented.

The second atom is named 'eta'. It is 1-by-1; it is of class ureal; and there are 3 copies diagonally augmented.

The third atom is named 'rho'. It is 1-by-1; it is of class ureal; and there is 1 copy,

The 4th output argument contains a cell array of normalized uncertain elements. The cell array contains as many occurrences of each element as there are occurrences in the original uncertain object A.

```
size(NormUnc)
ans =
    6 1
NormUnc{1}
Uncertain Real Parameter: Name deltaNormalized, NominalValue O,
variability = [-1 1]
isequal(NormUnc{2},NormUnc{1})
ans =
    1
NormUnc {3}
Uncertain Real Parameter: Name etaNormalized, NominalValue 0,
variability = [-1 1]
isequal(NormUnc {4},NormUnc{3})
ans =
    1
isequal(NormUnc{5},NormUnc{3})
ans =
    1
```

```
NormUnc{6}
Uncertain Real Parameter: Name rhoNormalized, NominalValue 0,
variability = [-1 1]
```

Each normalized element has the string 'Normalized ' appended to its original name to avoid confusion. By normalized,

- ureal objects have nominal value of 0 , and range from -1 to 1 .
- ultidyn objects are norm bounded, with norm bound of 1 .
- ucomplex objects have nominal value of 0 , and radius 1 .
- ucomplexm objects have nominal value of 0 , and identity matrices for each of the WL andWR weights.

The possible behaviors of Delta and blkdiag(NormUnc\{:\}) are the same. Consequently, the possible behaviors of A and lft(blkdiag (NormUnc \{: \}) , M) are the same.

Hence, by manipulating M, BlkStruct and NormUnc, a power-user has direct access to all of the linear fractional transformation details, and can easily work at the level of the theorems and algorithms that underlie the methods.

Generalized Robustness Analysis

- "Introduction to Generalized Robustness Analysis" on page 2-2
- "Robust Stability Margin" on page 2-4
- "Robust Performance Margin" on page 2-5
- "Worst-Case Gain Measure" on page 2-6

Introduction to Generalized Robustness Analysis

The performance of a nominally stable uncertain system model will generally degrade for specific values of its uncertain elements. Moreover, the maximum possible degradation increases as the uncertain elements are allowed to further and further deviate from their nominal values.

The graph below shows the typical tradeoff curve between allowable deviation of uncertain elements from their nominal values and the worst-case degradation in system performance. Here, system performance is characterized by system gain (e.g., peak magnitude on Bode plot). Interpreting the system as the relationship mapping disturbances/commands to errors, small system gains are desirable, and large gains are undesirable.

When all uncertain elements are set to their nominal values (i.e., zero deviation from their nominal values) the input/output gain of the system is its nominal value. In the figure, the nominal system gain is about 0.8. As the uncertainties are allowed to deviate from nominal, the maximum
(over the uncertain elements) system gain increases. The heavy blue line represents the maximum system gain due to uncertainty of various sizes (the horizontal axis). and is called the system performance degradation curve. It is monotonically increasing.

Determining specific attributes of the system performance degradation curve are referred to as robustness computations.

Generally, "robustness computations" refer to determining specific attributes of the system performance degradation curve. The commands robuststab, robustperf and wcgain all compute single scalar attributes of the system performance degradation curve.

Redraw the system performance degradation curve with 3 additional curves: a hyperbola defined by $x y=1$; a vertical line drawn at the uncertainty bound $=$ 1 ; and a vertical line tangent to the asymptotic behavior of the performance degradation curve at large uncertainty bounds. These are used to define three robustness measures, explained next.

Robust Stability Margin

The robust stability margin, StabMarg, is the size of the smallest deviation from nominal of the uncertain elements that leads to system instability.

System instability is equivalent to the system gain becoming arbitrarily large, and hence characterized by the vertical line tangent to the asymptotic behavior of the performance degradation curve.

Robust Performance Margin

The hyperbola is used to define the performance margin. Systems whose performance degradation curve intersects high on the hyperbola curve represent "non-robustly performing systems" in that very small deviations of the uncertain elements from their nominal values can result in very large system gains. Conversely, an intersection low on the hyperbola represent "robustly performing systems."

The point where the system performance degradation curve crosses the green line is used as a scalar measure of the robustness of a system to uncertainty. The horizontal coordinate of the crossing point is the robust performance margin, PerfMarg.

Worst-Case Gain Measure

The worst-case gain measure is the maximum achievable system gain over all uncertain elements whose normalized size is bounded by 1 .

On the graph, this is the vertical coordinate of the performance degradation curve as it crosses the vertical line drawn at the uncertainty bound $=1$.

Each measure captures a single scalar attribute of the system performance degradation curve. Mathematically, they are independent quantities, answering subtlely different questions. Consequently, for two uncertain systems, sysA and sysB, it is possible that the StabMarg of sysA is larger than the StabMarg of sysB, though the PerfMarg of sysA is smaller than the PerfMarg of sysB. Nevertheless, they are useful metrics for concise description of the robustness of a system (uss or ufrd) due to various uncertain elements.

Introduction to Linear Matrix Inequalities

- "Linear Matrix Inequalities" on page 3-2
- "LMIs and LMI Problems" on page 3-4
- "Further Mathematical Background" on page 3-10
- "Bibliography" on page 3-11

Linear Matrix Inequalities

Linear Matrix Inequalities (LMIs) and LMI techniques have emerged as powerful design tools in areas ranging from control engineering to system identification and structural design. Three factors make LMI techniques appealing:

- A variety of design specifications and constraints can be expressed as LMIs.
- Once formulated in terms of LMIs, a problem can be solved exactly by efficient convex optimization algorithms (see "LMI Solvers" on page 4-22).
- While most problems with multiple constraints or objectives lack analytical solutions in terms of matrix equations, they often remain tractable in the LMI framework. This makes LMI-based design a valuable alternative to classical "analytical" methods.

See [9] for a good introduction to LMI concepts. Robust Control Toolbox ${ }^{\text {TM }}$ software is designed as an easy and progressive gateway to the new and fast-growing field of LMIs:

- For users who occasionally need to solve LMI problems, the LMI Editor and the tutorial introduction to LMI concepts and LMI solvers provide for quick and easy problem solving.
- For more experienced LMI users, Chapter 4, "LMI Lab", offers a rich, flexible, and fully programmable environment to develop customized LMI-based tools.

LMI Features

Robust Control Toolbox LMI functionality serves two purposes:

- Provide state-of-the-art tools for the LMI-based analysis and design of robust control systems
- Offer a flexible and user-friendly environment to specify and solve general LMI problems (the LMI Lab)

Examples of LMI-based analysis and design tools include

- Functions to analyze the robust stability and performance of uncertain systems with varying parameters (popov, quadstab, quadperf ...)
- Functions to design robust control with a mix of $\mathrm{H}_{2}, \mathrm{H}_{\infty}$, and pole placement objectives (h2hinfsyn)
- Functions for synthesizing robust gain-scheduled H_{∞} controllers (hinfgs)

For users interested in developing their own applications, the LMI Lab provides a general-purpose and fully programmable environment to specify and solve virtually any LMI problem. Note that the scope of this facility is by no means restricted to control-oriented applications.

Note Robust Control Toolbox software implements state-of-the-art interior-point LMI solvers. While these solvers are significantly faster than classical convex optimization algorithms, you should keep in mind that the complexity of LMI computations can grow quickly with the problem order (number of states). For example, the number of operations required to solve a Riccati equation is $o\left(\mathrm{n}^{3}\right)$ where n is the state dimension, while the cost of solving and equivalent "Riccati inequality" LMI is $\mathrm{o}\left(\mathrm{n}^{6}\right)$.

LMIs and LMI Problems

A linear matrix inequality (LMI) is any constraint of the form

$$
\begin{equation*}
A(x):=A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0 \tag{3-1}
\end{equation*}
$$

where

- $x=\left(x_{1}, \ldots, x_{N}\right)$ is a vector of unknown scalars (the decision or optimization variables)
- A_{0}, \ldots, A_{N} are given symmetric matrices
- < 0 stands for "negative definite," i.e., the largest eigenvalue of $A(x)$ is negative

Note that the constraints $A(x)>0$ and $A(x)<B(x)$ are special cases of Equation 3-1 since they can be rewritten as $-A(x)<0$ and $A(x)-B(x)<0$, respectively.

The LMI of Equation 3-1 is a convex constraint on x since $A(y)<0$ and $A(z)<0$ imply that $A\left(\frac{y+z}{2}\right)<0$. As a result,

- Its solution set, called the feasible set, is a convex subset of R^{N}
- Finding a solution x to Equation 3-1, if any, is a convex optimization problem.

Convexity has an important consequence: even though Equation 3-1 has no analytical solution in general, it can be solved numerically with guarantees of finding a solution when one exists. Note that a system of LMI constraints can be regarded as a single LMI since

$$
\left\{\begin{array}{c}
A_{1}(x)<0 \\
\vdots \\
A_{K}(x)<0
\end{array}\right.
$$

is equivalent to

$$
A(x):=\operatorname{diag}\left(\mathrm{A}_{1}(x), \ldots, \mathrm{A}_{\mathrm{K}}(x)\right)<0
$$

where diag $\left(A_{1}(x), \ldots, A_{\mathrm{K}}(x)\right)$ denotes the block-diagonal matrix with $A_{1}(x), \ldots, A_{\mathrm{K}}(x)$ on its diagonal. Hence multiple LMI constraints can be imposed on the vector of decision variables x without destroying convexity.

In most control applications, LMIs do not naturally arise in the canonical form of Equation 3-1, but rather in the form
$L\left(X_{1}, \ldots, X_{\mathrm{n}}\right)<R\left(X_{1}, \ldots, X_{\mathrm{n}}\right)$
where $L($.$) and R($.$) are affine functions of some structured matrix variables$ $X_{1}, \ldots, X_{\mathrm{n}}$. A simple example is the Lyapunov inequality

$$
\begin{equation*}
A^{T} X+X A<0 \tag{3-2}
\end{equation*}
$$

where the unknown X is a symmetric matrix. Defining $x_{1}, \ldots, x_{\mathrm{N}}$ as the independent scalar entries of X, this LMI could be rewritten in the form of Equation 3-1. Yet it is more convenient and efficient to describe it in its natural form Equation 3-2, which is the approach taken in the LMI Lab.

Three Generic LMI Problems

Finding a solution x to the LMI system

$$
\begin{equation*}
A(x)<0 \tag{3-3}
\end{equation*}
$$

is called the feasibility problem. Minimizing a convex objective under LMI constraints is also a convex problem. In particular, the linear objective minimization problem:

Minimize $c^{T} x$ subject to

$$
\begin{equation*}
A(x)<0 \tag{3-4}
\end{equation*}
$$

plays an important role in LMI-based design. Finally, the generalized eigenvalue minimization problem

Minimize λ subject to

$$
\begin{align*}
& A(x)<\lambda B(x) \\
& B(x)>0 \\
& C(x)>0 \tag{3-5}
\end{align*}
$$

is quasi-convex and can be solved by similar techniques. It owes its name to the fact that is related to the largest generalized eigenvalue of the pencil $(A(x), B(x))$.

Many control problems and design specifications have LMI formulations [9]. This is especially true for Lyapunov-based analysis and design, but also for optimal LQG control, H° control, covariance control, etc. Further applications of LMIs arise in estimation, identification, optimal design, structural design [6], [7], matrix scaling problems, and so on. The main strength of LMI formulations is the ability to combine various design constraints or objectives in a numerically tractable manner.

A nonexhaustive list of problems addressed by LMI techniques includes the following:

- Robust stability of systems with LTI uncertainty (μ-analysis) ([24], [21], [27])
- Robust stability in the face of sector-bounded nonlinearities (Popov criterion) ([22], [28], [13], [16])
- Quadratic stability of differential inclusions ([15], [8])
- Lyapunov stability of parameter-dependent systems ([12])
- Input/state/output properties of LTI systems (invariant ellipsoids, decay rate, etc.) ([9])
- Multi-model/multi-objective state feedback design ([4], [17], [3], [9], [10])
- Robust pole placement
- Optimal LQG control ([9])
- Robust H^{∞} control ([11], [14])
- Multi-objective H^{∞} synthesis ([18], [23], [10], [18])
- Design of robust gain-scheduled controllers ([5], [2])
- Control of stochastic systems ([9])
- Weighted interpolation problems ([9])

To hint at the principles underlying LMI design, let's review the LMI formulations of a few typical design objectives.

Stability

The stability of the dynamic system

$$
\dot{x}=A x
$$

is equivalent to the feasibility of the following problem:
Find $P=P^{T}$ such that $A^{T} P+P A<0, P>I$.
This can be generalized to linear differential inclusions (LDI)

$$
\dot{x}=A(t) x
$$

where $A(t)$ varies in the convex envelope of a set of LTI models:

$$
A(t) \in \operatorname{Co}\left\{A_{1}, \ldots, A_{n}\right\}=\left\{\sum_{i=1}^{n} a_{i} A_{i}: a_{i} \geq 0, \sum_{i=1}^{N} a_{i}=1\right\} .
$$

A sufficient condition for the asymptotic stability of this LDI is the feasibility of

Find $P=P^{T}$ such that $A_{i}^{T} P+P A_{i}<0, \quad P>I$.

RMS Gain

The random-mean-squares (RMS) gain of a stable LTI system

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u
\end{array}\right.
$$

is the largest input/output gain over all bounded inputs $u(t)$. This gain is the global minimum of the following linear objective minimization problem [1], [25], [26].

Minimize y over $X=X^{\mathrm{T}}$ and Y such that

$$
\left(\begin{array}{ccc}
A^{T} X+X A & X B & C^{T} \\
B^{T} X & -\gamma I & D^{T} \\
C & D & -\gamma I
\end{array}\right)<0
$$

and

$$
X>0 .
$$

LQG Performance

For a stable LTI system

$$
G\left\{\begin{array}{l}
\dot{x}=A x+B w \\
y=C x
\end{array}\right.
$$

where w is a white noise disturbance with unit covariance, the LQG or H_{2} performance $\|G\|_{2}$ is defined by

$$
\begin{aligned}
\|G\|_{2}^{2} & :=\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T} y^{T}(t) y(t) d t\right\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} G^{H}(j \omega) G(j \omega) d \omega
\end{aligned}
$$

It can be shown that

$$
\|G\|_{2}^{2}=\inf \left\{\operatorname{Trace}\left(\mathrm{CPC}^{T}\right): A P+P A^{T}+B B^{T}<0\right\}
$$

Hence $\|G\|_{2}^{2}$ is the global minimum of the LMI problem. Minimize Trace (Q) over the symmetric matrices P, Q such that

$$
A P+P A^{T}+B B^{T}<0
$$

and

$$
\left(\begin{array}{cc}
Q & C P \\
P C^{T} & P
\end{array}\right)>0 .
$$

Again this is a linear objective minimization problem since the objective Trace (Q) is linear in the decision variables (free entries of P, Q).

Further Mathematical Background

Efficient interior-point algorithms are now available to solve the three generic LMI problems Equation 3-2-Equation 3-4 defined in "Three Generic LMI Problems" on page $3-5$. These algorithms have a polynomial-time complexity. That is, the number $N(\varepsilon)$ of flops needed to compute an ε-accurate solution is bounded by
$M N^{3} \log (V / \varepsilon)$
where M is the total row size of the LMI system, N is the total number of scalar decision variables, and V is a data-dependent scaling factor. Robust Control Toolbox software implements the Projective Algorithm of Nesterov and Nemirovski [20], [19]. In addition to its polynomial-time complexity, this algorithm does not require an initial feasible point for the linear objective minimization problem Equation 3-3or the generalized eigenvalue minimization problem Equation 3-4.

Some LMI problems are formulated in terms of inequalities rather than strict inequalities. For instance, a variant of Equation 3-3 is

Minimize $c^{T} x$ subject to $A(x)<0$.
While this distinction is immaterial in general, it matters when $A(x)$ can be made negative semi-definite but not negative definite. A simple example is:

Minimize $c^{T} x$ subject to

$$
\left(\begin{array}{ll}
x & x \tag{3-6}\\
x & x
\end{array}\right) \geq 0
$$

Such problems cannot be handled directly by interior-point methods which require strict feasibility of the LMI constraints. A well-posed reformulation of Equation 3-5 would be

Minimize $c^{T} x$ subject to $x \geq 0$.
Keeping this subtlety in mind, we always use strict inequalities in this manual.

Bibliography

[1] Anderson, B.D.O., and S. Vongpanitlerd, Network Analysis, Prentice-Hall, Englewood Cliffs, 1973.
[2] Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled H° Control of Linear Parameter-Varying Systems," Proc. Amer. Contr. Conf., 1994, pp. 856-860.
[3] Bambang, R., E. Shimemura, and K. Uchida, "Mixed H_{2} / H^{∞} Control with Pole Placement," State-Feedback Case, Proc. Amer. Contr. Conf., 1993, pp. 2777-2779.
[4] Barmish, B.R., "Stabilization of Uncertain Systems via Linear Control," IEEE Trans. Aut. Contr., AC-28 (1983), pp. 848-850.
[5] Becker, G., and Packard, P., "Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.
[6] Bendsoe, M.P., A. Ben-Tal, and J. Zowe, "Optimization Methods for Truss Geometry and Topology Design," to appear in Structural Optimization.
[7] Ben-Tal, A., and A. Nemirovski, "Potential Reduction Polynomial-Time Method for Truss Topology Design," to appear in SIAM J. Contr. Opt.
[8] Boyd, S., and Q. Yang, "Structured and Simultaneous Lyapunov Functions for System Stability Problems," Int. J. Contr., 49 (1989), pp. 2215-2240.
[9] Boyd, S., L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM books, Philadelphia, 1994.
[10] Chilali, M., and P. Gahinet, " H^{∞} Design with Pole Placement Constraints: an LMI Approach," to appear in IEEE Trans. Aut. Contr. Also in Proc. Conf. Dec. Contr., 1994, pp. 553-558.
[11] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to H^{∞} Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[12] Gahinet, P., P. Apkarian, and M. Chilali, "Affine Parameter-Dependent Lyapunov Functions for Real Parametric Uncertainty," Proc. Conf. Dec. Contr., 1994, pp. 2026-2031.
[13] Haddad, W.M., and D.S. Berstein, "Parameter-Dependent Lyapunov Functions, Constant Real Parameter Uncertainty, and the Popov Criterion in Robust Analysis and Synthesis: Part 1 and 2," Proc. Conf. Dec. Contr., 1991, pp. 2274-2279 and 2632-2633.
[14] Iwasaki, T., and R.E. Skelton, "All Controllers for the General H° Control Problem: LMI Existence Conditions and State-Space Formulas," Automatica, 30 (1994), pp. 1307-1317.
[15] Horisberger, H.P., and P.R. Belanger, "Regulators for Linear Time-Varying Plants with Uncertain Parameters," IEEE Trans. Aut. Contr., AC-21 (1976), pp. 705-708.
[16] How, J.P., and S.R. Hall, "Connection between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty," Proc. Amer. Contr. Conf., 1993, pp. 1084-1089.
[17] Khargonekar, P.P., and M.A. Rotea, "Mixed H_{2} / H° Control: a Convex Optimization Approach," IEEE Trans. Aut. Contr., 39 (1991), pp. 824-837.
[18] Masubuchi, I., A. Ohara, and N. Suda, "LMI-Based Controller Synthesis: A Unified Formulation and Solution," submitted to Int. J. Robust and Nonlinear Contr., 1994.
[19] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[20] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[21] Packard, A., and J.C. Doyle, "The Complex Structured Singular Value," Automatica, 29 (1994), pp. 71-109.
[22] Popov, V.M., "Absolute Stability of Nonlinear Systems of Automatic Control," Automation and Remote Control, 22 (1962), pp. 857-875.
[23] Scherer, C., "Mixed $H_{2} H^{\infty}$ Control," to appear in Trends in Control: A European Perspective, volume of the special contributions to the ECC 1995.
[24] Stein, G., and J.C. Doyle, "Beyond Singular Values and Loop Shapes," J. Guidance, 14 (1991), pp. 5-16.
[25] Vidyasagar, M., Nonlinear System Analysis, Prentice-Hall, Englewood Cliffs, 1992.
[26] Willems, J.C., "Least-Squares Stationary Optimal Control and the Algebraic Riccati Equation," IEEE Trans. Aut. Contr., AC-16 (1971), pp. 621-634.
[27] Young, P.M., M.P. Newlin, and J.C. Doyle, "Let's Get Real," in Robust Control Theory, Springer Verlag, 1994, pp. 143-174.
[28] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems, Part I and II," IEEE Trans. Aut. Contr., AC-11 (1966), pp. 228-238 and 465-476.

LMI Lab

- "Introduction" on page 4-2
- "Specifying a System of LMIs" on page 4-8
- "Querying the LMI System Description" on page 4-21
- "LMI Solvers" on page 4-22
- "From Decision to Matrix Variables and Vice Versa" on page 4-28
- "Validating Results" on page 4-29
- "Modifying a System of LMIs" on page 4-30
- "Advanced Topics" on page 4-33
- "Bibliography" on page 4-45

Introduction

The LMI Lab is a high-performance package for solving general LMI problems. It blends simple tools for the specification and manipulation of LMIs with powerful LMI solvers for three generic LMI problems. Thanks to a structure-oriented representation of LMIs, the various LMI constraints can be described in their natural block-matrix form. Similarly, the optimization variables are specified directly as matrix variables with some given structure. Once an LMI problem is specified, it can be solved numerically by calling the appropriate LMI solver. The three solvers feasp, mincx, and gevp constitute the computational engine of the LMI portion of Robust Control Toolbox software. Their high performance is achieved through C-MEX implementation and by taking advantage of the particular structure of each LMI.

The LMI Lab offers tools to

- Specify LMI systems either symbolically with the LMI Editor or incrementally with the lmivar and lmiterm commands
- Retrieve information about existing systems of LMIs
- Modify existing systems of LMIs
- Solve the three generic LMI problems (feasibility problem, linear objective minimization, and generalized eigenvalue minimization)
- Validate results

This chapter gives a tutorial introduction to the LMI Lab as well as more advanced tips for making the most out of its potential. The tutorial material is also covered by the demo lmidem.

Some Terminology

Any linear matrix inequality can be expressed in the canonical form

$$
L(x)=L_{0}+x_{1} L_{1}+\ldots+x_{N} L_{N}<0
$$

where

- $L_{0}, L_{1}, \ldots, L_{N}$ are given symmetric matrices
- $x=\left(x_{1}, \ldots, x_{N}\right)^{T} \in R^{N}$ is the vector of scalar variables to be determined. We refer to x_{1}, \ldots, x_{N} as the decision variables. The names "design variables" and "optimization variables" are also found in the literature.

Even though this canonical expression is generic, LMIs rarely arise in this form in control applications. Consider for instance the Lyapunov inequality

$$
\begin{equation*}
A^{T} X+X A<0 \tag{4-1}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
0 & -2
\end{array}\right)
$$

and the variable

$$
X=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right)
$$

is a symmetric matrix. Here the decision variables are the free entries x_{1}, x_{2}, x_{3} of X and the canonical form of this LMI reads

$$
x_{1}\left(\begin{array}{cc}
-2 & 2 \tag{4-2}\\
2 & 0
\end{array}\right)+x_{2}\left(\begin{array}{cc}
0 & -3 \\
-3 & 4
\end{array}\right)+x_{3}\left(\begin{array}{cc}
0 & 0 \\
0 & -4
\end{array}\right)<0
$$

Clearly this expression is less intuitive and transparent than Equation 4-1. Moreover, the number of matrices involved in Equation 4-2 grows roughly as $n^{2} / 2$ if n is the size of the A matrix. Hence, the canonical form is very inefficient from a storage viewpoint since it requires storing $0\left(n^{2} / 2\right)$ matrices of size n when the single n-by- n matrix A would be sufficient. Finally, working with the canonical form is also detrimental to the efficiency of the LMI solvers. For these various reasons, the LMI Lab uses a structured representation of LMIs. For instance, the expression $A^{T} X+X A$ in the Lyapunov inequality Equation $4-1$ is explicitly described as a function of the matrix variable X, and only the A matrix is stored.

In general, LMIs assume a block matrix form where each block is an affine combination of the matrix variables. As a fairly typical illustration, consider the following LMI drawn from H^{∞} theory

$$
N^{T}\left(\begin{array}{ccc}
A^{T} X+X A & X C^{T} & B \tag{4-3}\\
C X & -\gamma I & D \\
B^{T} & D^{T} & -\gamma I
\end{array}\right) N<0
$$

where A, B, C, D, and N are given matrices and the problem variables are $X=$ $X^{T} \in R^{n \times n}$ and $\gamma \in R$. We use the following terminology to describe such LMIs:

- N is called the outer factor, and the block matrix

$$
L(X, \gamma)=\left(\begin{array}{ccc}
A^{T} X+X A & X C^{T} & B \\
C X & -\gamma I & D \\
B^{T} & D^{T} & -\gamma I
\end{array}\right)
$$

is called the inner factor. The outer factor needs not be square and is often absent.

- X and y are the matrix variables of the problem. Note that scalars are considered as 1-by-1 matrices.
- The inner factor $L(X, Y)$ is a symmetric block matrix, its block structure being characterized by the sizes of its diagonal blocks. By symmetry, $L(X$, Y) is entirely specified by the blocks on or above the diagonal.
- Each block of $L(X, \mathrm{Y})$ is an affine expression in the matrix variables X and y. This expression can be broken down into a sum of elementary terms. For instance, the block $(1,1)$ contains two elementary terms: $A^{T} X$ and $X A$.
- Terms are either constant or variable. Constant terms are fixed matrices like B and D above. Variable terms involve one of the matrix variables, like $X A, X C^{T}$, and $-{ }^{\gamma} I$ above.

The LMI (Equation 4-3) is specified by the list of terms in each block, as is any LMI regardless of its complexity.

As for the matrix variables X and Y , they are characterized by their dimensions and structure. Common structures include rectangular unstructured,
symmetric, skew-symmetric, and scalar. More sophisticated structures are sometimes encountered in control problems. For instance, the matrix variable X could be constrained to the block-diagonal structure:

$$
X=\left(\begin{array}{c|cc}
x_{1} & 0 & 0 \\
\hline 0 & x_{2} & x_{3} \\
0 & x_{3} & x_{4}
\end{array}\right)
$$

Another possibility is the symmetric Toeplitz structure:

$$
X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{2} & x_{1} & x_{2} \\
x_{3} & x_{2} & x_{1}
\end{array}\right)
$$

Summing up, structured LMI problems are specified by declaring the matrix variables and describing the term content of each LMI. This term-oriented description is systematic and accurately reflects the specific structure of the LMI constraints. There is no built-in limitation on the number of LMIs that you can specify or on the number of blocks and terms in any given LMI. LMI systems of arbitrary complexity can therefore, be defined in the LMI Lab.

Overview of the LMI Lab

The LMI Lab offers tools to specify, manipulate, and numerically solve LMIs. Its main purpose is to

- Allow for straightforward description of LMIs in their natural block-matrix form
- Provide easy access to the LMI solvers (optimization codes)
- Facilitate result validation and problem modification

The structure-oriented description of a given LMI system is stored as a single vector called the internal representation and generically denoted by LMISYS in the sequel. This vector encodes the structure and dimensions of the LMIs and matrix variables, a description of all LMI terms, and the related numerical data. It must be stressed that you need not attempt to read or understand
the content of LMISYS since all manipulations involving this internal representation can be performed in a transparent manner with LMI-Lab tools.

The LMI Lab supports the following functionalities:

Specification of a System of LMIs

LMI systems can be either specified as symbolic matrix expressions with the interactive graphical user interface lmiedit, or assembled incrementally with the two commands lmivar and lmiterm. The first option is more intuitive and transparent while the second option is more powerful and flexible.

Information Retrieval

The interactive function lmiinfo answers qualitative queries about LMI systems created with lmiedit or lmivar and lmiterm. You can also use lmiedit to visualize the LMI system produced by a particular sequence of lmivar/lmiterm commands.

Solvers for LMI Optimization Problems

General-purpose LMI solvers are provided for the three generic LMI problems defined in "Three Generic LMI Problems" on page 3-5. These solvers can handle very general LMI systems and matrix variable structures. They return a feasible or optimal vector of decision variables x^{*}. The corresponding values
$X_{1}^{*}, \ldots, X_{K}^{*}$ of the matrix variables are given by the function dec2mat.

Result Validation

The solution x^{*} produced by the LMI solvers is easily validated with the functions evallmi and showlmi. This allows a fast check and/or analysis of the results. With evallmi, all variable terms in the LMI system are evaluated for the value x^{*} of the decision variables. The left and right sides of each LMI then become constant matrices that can be displayed with showlmi.

Modification of a System of LMIs

An existing system of LMIs can be modified in two ways:

- An LMI can be removed from the system with dellmi.
- A matrix variable X can be deleted using delmvar. It can also be instantiated, that is, set to some given matrix value. This operation is performed by setmvar and allows, for example, to fix some variables and solve the LMI problem with respect to the remaining ones.

Specifying a System of LMIs

The LMI Lab can handle any system of LMIs of the form
$N^{T} L\left(X_{1}, \ldots, X_{K}\right) N<M T R\left(X_{1}, \ldots, X_{K}\right) M$
where

- X_{1}, \ldots, X_{K} are matrix variables with some prescribed structure
- The left and right outer factors N and M are given matrices with identical dimensions
- The left and right inner factors $L($.$) and R($.$) are symmetric block matrices$ with identical block structures, each block being an affine combination of X_{1}, \ldots, X_{K} and their transposes.

Note Throughout this chapter, "left side" refers to what is on the "smaller" side of the inequality, and "right side" to what is on the "larger" side. Accordingly, X is called the right-hand side and 0 the left side of the LMI $0<X$ even when this LMI is written as $X>0$.

The specification of an LMI system involves two steps:
1 Declare the dimensions and structure of each matrix variable X_{1}, \ldots, X_{K}.
2 Describe the term content of each LMI.
This process creates the so-called internal representation of the LMI system. This computer description of the problem is used by the LMI solvers and in all subsequent manipulations of the LMI system. It is stored as a single vector called LMISYS.

There are two ways of generating the internal description of a given LMI system: (1) by a sequence of lmivar/lmiterm commands that build it incrementally, or (2) via the LMI Editor lmiedit where LMIs can be specified directly as symbolic matrix expressions. Though somewhat less flexible and powerful than the command-based description, the LMI Editor is more
straightforward to use, hence particularly well-suited for beginners. Thanks to its coding and decoding capabilities, it also constitutes a good tutorial introduction to lmivar and lmiterm. Accordingly, beginners may elect to skip the subsections on Imivar and lmiterm and to concentrate on the GUI-based specification of LMIs with lmiedit.

A Simple Example

The following tutorial example is used to illustrate the specification of LMI systems with the LMI Lab tools. Run the demo lmidem to see a complete treatment of this example.

Example: Specifying LMI Systems

Consider a stable transfer function

$$
\begin{equation*}
G(s)=C(s I-A)^{-1} B \tag{4-4}
\end{equation*}
$$

with four inputs, four outputs, and six states, and consider the set of input/output scaling matrices D with block-diagonal structure

$$
D=\left(\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \tag{4-5}\\
0 & d_{1} & 0 & 0 \\
0 & 0 & d_{2} & d_{3} \\
0 & 0 & d_{4} & d_{5}
\end{array}\right)
$$

The following problem arises in the robust stability analysis of systems with time-varying uncertainty [4]:

Find, if any, a scaling D of structure (Equation 4-5) such that the largest gain across frequency of $D G(s) D^{-1}$ is less than one.

This problem has a simple LMI formulation: there exists an adequate scaling D if the following feasibility problem has solutions:

Find two symmetric matrices $X \in R^{6 \times 6}$ and $S=D^{T} D \in R^{4 \times 4}$ such that

$$
\begin{align*}
& \left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0 \tag{4-6}\\
& X>0 \tag{4-7}\\
& S>1 .
\end{align*}
$$

The LMI system (Equation 4-6, Equation 4-7, and Equation 4-8) can be described with the LMI Editor as outlined below. Alternatively, its internal description can be generated with lmivar and lmiterm commands as follows:

```
setlmis([])
X=lmivar(1,[[6 1])
S=lmivar(1,[2 0;2 1])
% 1st LMI
lmiterm([11 1 1 1 X],1,A,'s')
lmiterm([\begin{array}{llll}{1}&{1}&{1}&{S}\end{array}],\mp@subsup{C}{}{\prime},C)
lmiterm([[1 1 2 X],1,B)
lmiterm([11 2 2 S], 1,1)
% 2nd LMI
lmiterm([ 2 1 1 X],1,1)
% 3rd LMI
lmiterm([ [ 3 1 1 1 S],1,1)
lmiterm([3 1 1 0)],1)
LMISYS = getlmis
```

Here the lmivar commands define the two matrix variables X and S while the lmiterm commands describe the various terms in each LMI. Upon completion, getlmis returns the internal representation LMISYS of this LMI system. The following subsections give more details on the syntax and usage of these various commands:

- "Initializing the LMI System" on page 4-11
- "Specifying the LMI Variables" on page 4-11
- "Specifying Individual LMIs" on page 4-13

More information on how the internal representation is updated by lmivar/lmiterm can also be found in "How It All Works" on page 4-19.

Initializing the LMI System

The description of an LMI system should begin with setlmis and end with getlmis. The function setlmis initializes the LMI system description. When specifying a new system, type

```
setlmis([])
```

To add on to an existing LMI system with internal representation LMISO, type

```
setlmis(LMISO)
```


Specifying the LMI Variables

The matrix variables are declared one at a time with lmivar and are characterized by their structure. To facilitate the specification of this structure, the LMI Lab offers two predefined structure types along with the means to describe more general structures:

Type 1 Symmetric block diagonal structure. This corresponds to matrix variables of the form

$$
X=\left(\begin{array}{cccc}
D_{1} & 0 & \ldots & 0 \\
0 & D_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & D_{r}
\end{array}\right)
$$

where each diagonal block D_{j} is square and is either zero, a full symmetric matrix, or a scalar matrix

$$
D_{j}=d \times I, d \in R
$$

This type encompasses ordinary symmetric matrices (single block) and scalar variables (one block of size one).
Type 2 Rectangular structure. This corresponds to arbitrary rectangular matrices without any particular structure.
Type 3 General structures. This third type is used to describe more sophisticated structures and/or correlations between the matrix variables. The principle is as follows: each entry of X is specified independently as either $0, x \mathrm{n}$, or $-x \mathrm{n}$ where x denotes the n-th decision variable in the problem. For details on how to use Type 3, see "Structured Matrix Variables" on page 4-33 as well as the lmivar entry in the reference pages.

In "Example: Specifying LMI Systems" on page 4-9, the matrix variables X and S are of Type 1. Indeed, both are symmetric and S inherits the block-diagonal structure from Equation 4-5 of D. Specifically, S is of the form

$$
S=\left(\begin{array}{cccc}
s_{1} & 0 & 0 & 0 \\
0 & s_{1} & 0 & 0 \\
0 & 0 & s_{2} & s_{3} \\
0 & 0 & s_{3} & s_{4}
\end{array}\right) .
$$

After initializing the description with the command setlmis([]), these two matrix variables are declared by

```
lmivar(1,[6 1]) % X
lmivar(1,[2 0;2 1]) % S
```

In both commands, the first input specifies the structure type and the second input contains additional information about the structure of the variable:

- For a matrix variable X of Type 1 , this second input is a matrix with two columns and as many rows as diagonal blocks in X. The first column lists the sizes of the diagonal blocks and the second column specifies their nature with the following convention:

1: full symmetric block
0: scalar block
-1: zero block
In the second command, for instance,[20;2 1] means that S has two diagonal blocks, the first one being a 2 -by- 2 scalar block and the second one a 2 -by- 2 full block.

- For matrix variables of Type 2, the second input of Imivar is a two-entry vector listing the row and column dimensions of the variable. For instance, a 3-by-5 rectangular matrix variable would be defined by

```
lmivar(2,[3 5])
```

For convenience, lmivar also returns a "tag" that identifies the matrix variable for subsequent reference. For instance, X and S in "Example: Specifying LMI Systems" on page $4-9$ could be defined by

```
X = lmivar(1,[6 1])
S = lmivar(1,[2 0;2 1])
```

The identifiers X and S are integers corresponding to the ranking of X and S in the list of matrix variables (in the order of declaration). Here their values would be $\mathrm{X}=1$ and $\mathrm{S}=2$. Note that these identifiers still point to X and S after deletion or instantiation of some of the matrix variables. Finally, lmivar can also return the total number of decision variables allocated so far as well as the entry-wise dependence of the matrix variable on these decision variables (see the lmivar entry in the reference pages for more details).

Specifying Individual LMIs

After declaring the matrix variables with lmivar, we are left with specifying the term content of each LMI. Recall that LMI terms fall into three categories:

- The constant terms, i.e., fixed matrices like I in the left side of the LMI $S>I$
- The variable terms, i.e., terms involving a matrix variable. For instance, $A^{\mathrm{T}} X$ and $C^{\mathrm{T}} S C$ in Equation 4-6. Variable terms are of the form $P X Q$ where X is a variable and P, Q are given matrices called the left and right coefficients, respectively.
- The outer factors

The following rule should be kept in mind when describing the term content of an LMI:

Note Specify only the terms in the blocks on or above the diagonal. The inner factors being symmetric, this is sufficient to specify the entire LMI. Specifying all blocks results in the duplication of off-diagonal terms, hence in the creation of a different LMI. Alternatively, you can describe the blocks on or below the diagonal.

LMI terms are specified one at a time with lmiterm. For instance, the LMI

$$
\left(\begin{array}{cc}
A^{T} X+X A+C^{T} S C & X B \\
B^{T} X & -S
\end{array}\right)<0
$$

is described by

```
lmiterm([1 1 1 1],1,A,'s')
lmiterm([\begin{array}{llll}{1}&{1}&{1}&{2],C',C)}\end{array})
lmiterm([\begin{array}{llll}{1}&{1}&{2}&{1],1,B)}\end{array})
lmiterm([1 2 2 2], 1,1)
```

These commands successively declare the terms $A^{T} X+X A, C^{T} S C, X B$, and $-S$. In each command, the first argument is a four-entry vector listing the term characteristics as follows:

- The first entry indicates to which LMI the term belongs. The value m means "left side of the m-th LMI," and -m means "right side of the m-th LMI."
- The second and third entries identify the block to which the term belongs. For instance, the vector [$\left.\begin{array}{llll}1 & 1 & 2 & 1\end{array}\right]$ indicates that the term is attached to the $(1,2)$ block.
- The last entry indicates which matrix variable is involved in the term. This entry is 0 for constant terms, k for terms involving the k-th matrix
variable X_{k}, and -k for terms involving X_{k}^{T} (here X and S are first and second variables in the order of declaration).

Finally, the second and third arguments of lmiterm contain the numerical data (values of the constant term, outer factor, or matrix coefficients P and Q for variable terms $P X Q$ or $P X^{T} Q$). These arguments must refer to existing MATLAB variables and be real-valued. See "Complex-Valued LMIs" on page 4-35 for the specification of LMIs with complex-valued coefficients.

Some shorthand is provided to simplify term specification. First, blocks are zero by default. Second, in diagonal blocks the extra argument 's ' allows you to specify the conjugated expression $A X B+B^{T} X^{T} A^{T}$ with a single lmiterm command. For instance, the first command specifies $A^{T} X+X A$ as the "symmetrization" of $X A$. Finally, scalar values are allowed as shorthand for scalar matrices, i.e., matrices of the form αI with a scalar. Thus, a constant term of the form αI can be specified as the "scalar" α. This also applies to the coefficients P and Q of variable terms. The dimensions of scalar matrices are inferred from the context and set to 1 by default. For instance, the third LMI $S>I$ in "Example: Specifying Matrix Variable Structures" on page 4-33 is described by

```
lmiterm([ [ 3 1 1 1 2],1,1) % 1*S*1 = S
lmiterm([3 1 1 0],1) % 1*I = I
```

Recall that by convention S is considered as the right side of the inequality, which justifies the -3 in the first command.

Finally, to improve readability it is often convenient to attach an identifier (tag) to each LMI and matrix variable. The variable identifiers are returned by lmivar and the LMI identifiers are set by the function newlmi. These identifiers can be used in lmiterm commands to refer to a given LMI or matrix variable. For the LMI system of "Example: Specifying LMI Systems" on page 4-9, this would look like:

```
setlmis([])
X = lmivar(1,[[6 1])
S = lmivar(1,[2 0;2 1])
BRL = newlmi
lmiterm([BRL 
```

```
lmiterm([BRL 1 1 S S],C',C)
lmiterm([BRL 1 2 X],1,B)
lmiterm([BRL 2 2 S], 1,1)
Xpos = newlmi
lmiterm([-Xpos 1 1 X],1,1)
Slmi = newlmi
lmiterm([-Slmi 1 1 S],1,1)
lmiterm([Slmi 1 1 0],1)
```

When the LMI system is completely specified, type

```
LMISYS = getlmis
```

This returns the internal representation LMISYS of this LMI system. This MATLAB description of the problem can be forwarded to other LMI-Lab functions for subsequent processing. The command getlmis must be used only once and after declaring all matrix variables and LMI terms.

Here the identifiers X and S point to the variables X and S while the tags BRL, Xpos, and Slmi point to the first, second, and third LMI, respectively. Note that -Xpos refers to the right-hand side of the second LMI. Similarly, $-X$ would indicate transposition of the variable X.

Specifying LMIs with the LMI Editor

The LMI Editor lmiedit is a graphical user interface (GUI) to specify LMI systems in a straightforward symbolic manner. Typing

```
lmiedit
```

calls up a window with several editable text areas and various buttons.

In more detail, to specify your LMI system,
1 Declare each matrix variable (name and structure) in the upper half of the worksheet. The structure is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other structures) and by an additional " structure" matrix. This matrix contains specific information about the structure and corresponds to the second argument of lmivar (see "Specifying the LMI Variables" on page 4-11 for details).

Please use one line per matrix variable in the text editing areas.
2 Specify the LMIs as MATLAB expressions in the lower half of the worksheet. For instance, the LMI

$$
\left(\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & -I
\end{array}\right)<0
$$

is entered by typing

$$
\left[a^{\prime *} x+x * a \quad x * b ; b{ }^{\prime *} x \text { 1] }<0\right.
$$

if x is the name given to the matrix variable X in the upper half of the worksheet. The left- and right-hand sides of the LMIs should be valid MATLAB expressions.

Once the LMI system is fully specified, the following tasks can be performed by clicking the corresponding button:

- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands button). Conversely, the LMI system defined by a particular sequence of lmivar/lmiterm commands can be displayed as a MATLAB expression by clicking on the describe... buttons.

Beginners can use this facility as a tutorial introduction to the lmivar and lmiterm commands.

- Save the symbolic description of the LMI system as a MATLAB string (save button). This description can be reloaded later on by clicking the load button.
- Read a sequence of lmivar/lmiterm commands from a file (read button). You can then click on describe the matrix variables or describe the LMIs to visualize the symbolic expression of the LMI system specified by these commands. The file should describe a single LMI system but may otherwise contain any sequence of MATLAB commands.

This feature is useful for code validation and debugging.
Write in a file the sequence of lmivar/lmiterm commands needed to describe a particular LMI system (write button).
This is helpful to develop code and prototype MATLAB functions based on the LMI Lab.

- Generate the internal representation of the LMI system by clicking create. The result is written in a MATLAB variable named after the LMI system (if
the "name of the LMI system" is set to mylmi, the internal representation is written in the MATLAB variable mylmi). Note that all LMI-related data should be defined in the MATLAB workspace at this stage.
The internal representation can be passed directly to the LMI solvers or any other LMI Lab function.

Keyboard Shortcuts

As with lmiterm, you can use various shortcuts when entering LMI expressions at the keyboard. For instance, zero blocks can be entered simply as 0 and need not be dimensioned. Similarly, the identity matrix can be entered as 1 without dimensioning. Finally, upper diagonal LMI blocks need not be fully specified. Rather, you can just type (*) in place of each such block.

Limitations

Though fairly general, lmiedit is not as flexible as lmiterm and the following limitations should be kept in mind:

- Parentheses cannot be used around matrix variables. For instance, the expression

$$
(a * x+b)^{\prime *} c+c^{\prime *}(a * x+b)
$$

is invalid when x is a variable name. By contrast,

$$
(\mathrm{a}+\mathrm{b})^{\prime *} x+x^{\prime *}(\mathrm{a}+\mathrm{b})
$$

is perfectly valid.

- Loops and if statements are ignored.
- When turning lmiterm commands into a symbolic description of the LMI system, an error is issued if the first argument of lmiterm cannot be evaluated. Use the LMI and variable identifiers supplied by newlmi and lmivar to avoid such difficulties.

How It All Works

Users familiar with MATLAB may wonder how lmivar and lmiterm physically update the internal representation LMISYS since LMISYS is not an argument to these functions. In fact, all updating is performed through
global variables for maximum speed. These global variables are initialized by setlmis, cleared by getlmis, and are not visible in the workspace. Even though this artifact is transparent from the user's viewpoint, be sure to

- Invoke getlmis only once and after completely specifying the LMI system
- Refrain from using the command clear global before the LMI system description is ended with getlmis

Querying the LMI System Description

Recall that the full description of an LMI system is stored as a single vector called the internal representation. The user should not attempt to read or retrieve information directly from this vector. Robust Control Toolbox software provides three functions called lmiinfo, lminbr, and matnbr to extract and display all relevant information in a user-readable format.

Imiinfo

lminbr is an interactive facility to retrieve qualitative information about LMI systems. This includes the number of LMIs, the number of matrix variables and their structure, the term content of each LMI block, etc. To invoke lmiinfo, enter

```
lmiinfo(LMISYS)
```

where LMISYS is the internal representation of the LMI system produced by getlmis.

Iminbr and matnbr

These two functions return the number of LMIs and the number of matrix variables in the system. To get the number of matrix variables, for instance, enter
matnbr(LMISYS)

LMI Solvers

LMI solvers are provided for the following three generic optimization problems (here x denotes the vector of decision variables, i.e., of the free entries of the matrix variables X_{1}, \ldots, X_{K}):

- Feasibility problem

Find $x \in R^{N}$ (or equivalently matrices X_{1}, \ldots, X_{K} with prescribed structure) that satisfies the LMI system
$A(x)<B(x)$
The corresponding solver is called feasp.

- Minimization of a linear objective under LMI constraints

Minimize $c^{T} x$ over $x \in R^{N}$ subject to $A(x)<B(x)$
The corresponding solver is called mincx.

- Generalized eigenvalue minimization problem

Minimize λ over $x \in R^{N}$ subject to

$$
\begin{aligned}
C(x) & <D(x) \\
0 & <B(x) \\
A(x) & <\lambda B(x) .
\end{aligned}
$$

The corresponding solver is called gevp.
Note that $A(x)<\mathrm{B}(x)$ above is a shorthand notation for general structured LMI systems with decision variables $x=\left(x_{1}, \ldots, x_{N}\right)$.

The three LMI solvers feasp, mincx, and gevp take as input the internal representation LMISYS of an LMI system and return a feasible or optimizing value x^{*} of the decision variables. The corresponding values of the matrix variables X_{1}, \ldots, X_{K} are derived from x^{*} with the function dec2mat. These solvers are C-MEX implementations of the polynomial-time Projective Algorithm Projective Algorithm of Nesterov and Nemirovski [3], [2].

For generalized eigenvalue minimization problems, it is necessary to distinguish between the standard LMI constraints $\mathrm{C}(x)<\mathrm{D}(x)$ and the linear-fractional LMIs
$\mathrm{A}(\mathrm{x})<\lambda \mathrm{B}(\mathrm{x})$
attached to the minimization of the generalized eigenvalue λ. When using gevp, you should follow these three rules to ensure proper specification of the problem:

- Specify the LMIs involving λ as $A(x)<B(x)$ (without the λ)
- Specify them last in the LMI system. gevp systematically assumes that the last L LMIs are linear-fractional if L is the number of LMIs involving λ
- Add the constraint $0<B(x)$ or any other constraint that enforces it. This positivity constraint is required for well-posedness of the problem and is not automatically added by gevp (see Robust Control Toolbox Reference for details).

An initial guess xinit for x can be supplied to mincx or gevp. Use mat2dec to derive xinit from given values of the matrix variables X_{1}, \ldots, X_{K}. Finally, various options are available to control the optimization process and the solver behavior. These options are described in detail in the Robust Control Toolbox Reference.

The following example illustrates the use of the mincx solver.

Example: Minimizing Linear Objectives under LMI Constraints

Consider the optimization problem:
Minimize Trace (X) subject to

$$
\begin{equation*}
A^{T} X+X A+X B B^{T} X+Q<0 \tag{4-9}
\end{equation*}
$$

with data

$$
A=\left(\begin{array}{ccc}
-1 & -2 & 1 \\
3 & 2 & 1 \\
1 & -2 & -1
\end{array}\right) ; \quad B=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) ; \quad Q=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & -3 & -12 \\
0 & -12 & -36
\end{array}\right) .
$$

It can be shown that the minimizer X^{*} is simply the stabilizing solution of the algebraic Riccati equation
$A^{T} X+X A+X B B^{T} X+Q=0$
This solution can be computed directly with the Riccati solver care and compared to the minimizer returned by mincx.

From an LMI optimization standpoint, the problem specified in Equation 4-9 is equivalent to the following linear objective minimization problem:

Minimize Trace (X) subject to

$$
\left(\begin{array}{cc}
A^{T} X+X A+Q & X B \tag{4-10}\\
B^{T} X & -I
\end{array}\right)<0
$$

Since Trace (X) is a linear function of the entries of X, this problem falls within the scope of the mincx solver and can be numerically solved as follows:

1 Define the LMI constraint of Equation $4-9$ by the sequence of commands

```
setlmis([])
X = lmivar(1,[3 1]) % variable X, full symmetric
lmiterm([1 1 1 X],1,a,'s')
lmiterm([\begin{array}{llll}{1}&{1}&{1}&{0}\end{array}],q)
lmiterm([1 2 2 0],-1)
lmiterm([1 2 1 X],b',1)
LMIs = getlmis
```

2 Write the objective Trace (X) as $c^{T} x$ where x is the vector of free entries of X. Since c should select the diagonal entries of X, it is obtained as the decision vector corresponding to $X=I$, that is,

```
c = mat2dec(LMIs,eye(3))
```

Note that the function defcx provides a more systematic way of specifying such objectives (see "Specifying $c^{T} x$ Objectives for mincx" on page 4-38 for details).

3 Call mincx to compute the minimizer xopt and the global minimum copt = c'*xopt of the objective:

```
options = [1e 5,0,0,0,0]
[copt,xopt] = mincx(LMIs,c,options)
```

Here 1e 5 specifies the desired relative accuracy on copt.
The following trace of the iterative optimization performed by mincx appears on the screen:

```
Solver for linear objective minimization under LMI constraints
Iterations : Best objective value so far
```

1
2
3

4

5

6

7

8

9

10

11

12
-8.511476
-13.063640
new lower bound: -34.023978
-15.768450
new lower bound: -25.005604
-17.123012
new lower bound: -21.306781
-17. 882558
new lower bound: -19.819471
-18. 339853
new lower bound: -19.189417
-18.552558
new lower bound: -18.919668
-18.646811
new lower bound: -18.803708
-18.687324
new lower bound: -18.753903
-18.705715
new lower bound: -18.732574
-18.712175

***	new lower bound:	-18.723491
13	-18.714880	
***	new lower bound:	-18.719624
14	-18.716094	
***	new lower bound:	-18.717986
15	-18.716509	
***	new lower bound:	-18.717297
16	-18.716695	
***	new lower bound:	-18.716873
```Result: feasible solution of required accuracy best objective value: 18.716695 guaranteed relative accuracy: 9.50e 06```		
	n: 0.000\% of R =	+09

The iteration number and the best value of $c^{T} x$ at the current iteration appear in the left and right columns, respectively. Note that no value is displayed at the first iteration, which means that a feasible $x$ satisfying the constraint (Equation 4-10) was found only at the second iteration. Lower bounds on the global minimum of $c^{T} x$ are sometimes detected as the optimization progresses. These lower bounds are reported by the message

```
*** new lower bound: xxx
```

Upon termination, mincx reports that the global minimum for the objective Trace $(X)$ is -18.716695 with relative accuracy of at least $9.5 \times 10^{-6}$. This is the value copt returned by mincx.

4 mincx also returns the optimizing vector of decision variables xopt. The corresponding optimal value of the matrix variable $X$ is given by

```
Xopt = dec2mat(LMIs,xopt,X)
```

which returns

$$
X_{o p t}=\left(\begin{array}{ccc}
-6.3542 & -5.8895 & 2.2046 \\
-5.8895 & -6.2855 & 2.2201 \\
2.2046 & 2.2201 & -6.0771
\end{array}\right) .
$$

This result can be compared with the stabilizing Riccati solution computed by care:

```
Xst = care(a,b,q, 1)
```

norm(Xopt-Xst)
ans $=$
6.5390 e 05

## From Decision to Matrix Variables and Vice Versa

While LMIs are specified in terms of their matrix variables $X_{1}, \ldots, X_{\mathrm{K}}$, the LMI solvers optimize the vector $x$ of free scalar entries of these matrices, called the decision variables. The two functions mat2dec and dec2mat perform the conversion between these two descriptions of the problem variables.

Consider an LMI system with three matrix variables $X_{1}, X_{2}, X_{3}$. Given particular values X1, X2, X3 of these variables, the corresponding value xdec of the vector of decision variables is returned by mat2dec:

```
xdec = mat2dec(LMISYS, X1, X2, X3)
```

An error is issued if the number of arguments following LMISYS differs from the number of matrix variables in the problem (see matnbr).

Conversely, given a value xdec of the vector of decision variables, the corresponding value of the $k$-th matrix is given by dec2mat. For instance, the value X 2 of the second matrix variable is extracted from xdec by

```
X2 = dec2mat(LMISYS,xdec,2)
```

The last argument indicates that the second matrix variable is requested. It could be set to the matrix variable identifier returned by lmivar.

The total numbers of matrix variables and decision variables are returned by matnbr and decnbr, respectively. In addition, the function decinfo provides precise information about the mapping between decision variables and matrix variable entries (see the Robust Control Toolbox Reference).

## Validating Results

The LMI Lab offers two functions to analyze and validate the results of an LMI optimization. The function evallmi evaluates all variable terms in an LMI system for a given value of the vector of decision variables, for instance, the feasible or optimal vector returned by the LMI solvers. Once this evaluation is performed, the left and right sides of a particular LMI are returned by showlmi.

In the LMI problem considered in "Example: Minimizing Linear Objectives under LMI Constraints" on page 4-23, you can verify that the minimizer xopt returned by mincx satisfies the LMI constraint (Equation 4-10) as follows:

```
evlmi = evallmi(LMIs,xopt)
[lhs,rhs] = showlmi(evlmi,1)
```

The first command evaluates the system for the value xopt of the decision variables, and the second command returns the left and right sides of the first (and only) LMI. The negative definiteness of this LMI is checked by

```
eig(lhs-rhs)
ans =
 2.0387e 04
 3.9333e 05
 1.8917e 07
 4.6680e+01
```


## Modifying a System of LMIs

Once specified, a system of LMIs can be modified in several ways with the functions dellmi, delmvar, and setmvar.

## Deleting an LMI

The first possibility is to remove an entire LMI from the system with dellmi. For instance, suppose that the LMI system of "Example: Specifying LMI Systems" on page 4-9 is described in LMISYS and that we want to remove the positivity constraint on $X$. This is done by

```
NEWSYS = dellmi(LMISYS,2)
```

where the second argument specifies deletion of the second LMI. The resulting system of two LMIs is returned in NEWSYS.

The LMI identifiers (initial ranking of the LMI in the LMI system) are not altered by deletions. As a result, the last LMI
$S>I$
remains known as the third LMI even though it now ranks second in the modified system. To avoid confusion, it is safer to refer to LMIs via the identifiers returned by newlmi. If BRL, Xpos, and Slmi are the identifiers attached to the three LMIs, Equation 4-6-Equation 4-8, Slmi keeps pointing to $S>I$ even after deleting the second LMI by

```
NEWSYS = dellmi(LMISYS,Xpos)
```


## Deleting a Matrix Variable

Another way of modifying an LMI system is to delete a matrix variable, that is, to remove all variable terms involving this matrix variable. This operation is performed by delmvar. For instance, consider the LMI
$A^{T} X+X A+B W+W^{T} B^{T}+I<0$
with variables $X=X^{T} \epsilon R^{4} \times 4$ and $W \epsilon R^{2} \times^{4}$. This LMI is defined by

```
setlmis([])
```

```
X = lmivar(1,[4 1]) % X
W = lmivar(2,[2 4]) % W
lmiterm([\begin{array}{llll}{1}&{1}&{1}&{X],1,A,'s')}\end{array})
lmiterm([11 1 1 W],B,1,'s')
lmiterm([11 1 1 0],1)
LMISYS = getlmis
```

To delete the variable W, type the command

```
NEWSYS = delmvar(LMISYS,W)
```

The resulting NEWSYS now describes the Lyapunov inequality
$A^{T} X+X A+I<0$

Note that delmvar automatically removes all LMIs that depended only on the deleted matrix variable.

The matrix variable identifiers are not affected by deletions and continue to point to the same matrix variable. For subsequent manipulations, it is therefore advisable to refer to the remaining variables through their identifier. Finally, note that deleting a matrix variable is equivalent to setting it to the zero matrix of the same dimensions with setmvar.

## Instantiating a Matrix Variable

The function setmvar is used to set a matrix variable to some given value. As a result, this variable is removed from the problem and all terms involving it become constant terms. This is useful, for instance, to fixsetmvar some variables and optimize with respect to the remaining ones.

Consider again "Example: Specifying LMI Systems" on page 4-9 and suppose we want to know if the peak gain of $G$ itself is less than one, that is, if
$\|G\|^{\infty}<1$

This amounts to setting the scaling matrix $D$ (or equivalently, $S=D^{\mathrm{T}} D$ ) to a multiple of the identity matrix. Keeping in mind the constraint $S>I$, a legitimate choice is $S=2-B \Psi-I$. To set $S$ to this value, enter

```
NEWSYS = setmvar(LMISYS,S,2)
```

The second argument is the variable identifier $S$, and the third argument is the value to which $S$ should be set. Here the value 2 is shorthand for 2 -by- $I$. The resulting system NEWSYS reads

$$
\begin{array}{cc}
\left(\begin{array}{cc}
A^{T} X+X A+2 C^{T C} & X B \\
B^{T} X & -2 I
\end{array}\right)<0 \\
X & >0 \\
& 2 I>I .
\end{array}
$$

Note that the last LMI is now free of variable and trivially satisfied. It could, therefore, be deleted by

```
 NEWSYS = dellmi(NEWSYS,3)
or
 NEWSYS = dellmi(NEWSYS,Slmi)
```

if Slmi is the identifier returned by newlmi.

## Advanced Topics

This last section gives a few hints for making the most out of the LMI Lab. It is directed toward users who are comfortable with the basics, as described in "Introduction" on page 4-2.

## Structured Matrix Variables

Fairly complex matrix variable structures and interdependencies can be specified with lmivar. Recall that the symmetric block-diagonal or rectangular structures are covered by Types 1 and 2 of lmivar provided that the matrix variables are independent. To describe more complex structures or correlations between variables, you must use Type 3 and specify each entry of the matrix variables directly in terms of the free scalar variables of the problem (the so-called decision variables).

With Type 3, each entry is specified as either 0 or $\pm x_{\mathrm{n}}$ where $x_{\mathrm{n}}$ is the $n$-th decision variable. The following examples illustrate how to specify nontrivial matrix variable structures with lmivar. First, consider the case of uncorrelated matrix variables.

## Example: Specifying Matrix Variable Structures

Suppose that the problem variables include a 3-by-3 symmetric matrix $X$ and a 3-by-3 symmetric Toeplitz matrix:

$$
Y=\left(\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{1} & y_{2} \\
y_{3} & y_{2} & y_{1}
\end{array}\right) .
$$

The variable $Y$ has three independent entries, hence involves three decision variables. Since $Y$ is independent of $X$, these decision variables should be labeled $n+1, n+2$, $n+3$ where $n$ is the number of decision variables involved in $X$. To retrieve this number, define the variable $X$ (Type 1) by

```
setlmis([])
[X,n] = lmivar(1,[3 1])
```

The second output argument n gives the total number of decision variables used so far (here $\mathrm{n}=6$ ). Given this number, $Y$ can be defined by

$$
\text { Y = lmivar(3, n+[1 } 2 \text { 3;2 1 2;3 } 2 \text { 1]) }
$$

or equivalently by

$$
Y=\operatorname{lmivar}(3, \text { toeplitz(n+[11 } 2 \text { 3 } 3 \text { ) ) })
$$

where toeplitz is a standard MATLAB function. For verification purposes, we can visualize the decision variable distributions in $X$ and $Y$ with decinfo:

```
lmis = getlmis
decinfo(lmis,X)
ans =
 124
 2 35
 45
decinfo(lmis,Y)
ans =
 7 8 }
 8 8
 9 8
```

The next example is a problem with interdependent matrix variables.

## Example: Specifying Interdependent Matrix Variables

Consider three matrix variables $X, Y, Z$ with structure

$$
X=\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right), \quad Y=\left(\begin{array}{ll}
z & 0 \\
0 & t
\end{array}\right), \quad Z=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right)
$$

where $x, y, z, t$ are independent scalar variables. To specify such a triple, first define the two independent variables $X$ and $Y$ (both of Type 1 ) as follows:

```
setlmis([])
```

```
[X,n,sX] = lmivar(1,[1 0;1 0])
[Y,n,sY] = lmivar(1,[1 0;1 0])
```

The third output of lmivar gives the entry-wise dependence of $X$ and $Y$ on the decision variables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=(x, y, z, t)$ :

```
sX =
 1 0
 O
sY =
 3 0
 0 4
```

Using Type 3 of lmivar, you can now specify the structure of $Z$ in terms of the decision variables $x_{1}=x$ and $x_{4}=t$ :

$$
[Z, n, s Z]=\operatorname{lmivar}(3,[0 \quad s X(1,1) ; s Y(2,2) 0])
$$

Since $\operatorname{sX}(1,1)$ refers to $x_{1}$ while $\mathrm{sY}(2,2)$ refers to $x_{4}$, this defines the variable

$$
Z=\left(\begin{array}{cc}
0 & -x_{1} \\
-x_{4} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -x \\
-t & 0
\end{array}\right)
$$

as confirmed by checking its entry-wise dependence on the decision variables:

$s Z$	
0	1
4	0

## Complex-Valued LMIs

The LMI solvers are written for real-valued matrices and cannot directly handle LMI problems involving complex-valued matrices. However,
complex-valued LMIs can be turned into real-valued LMIs by observing that a complex Hermitian matrix $L(x)$ satisfies
$L(x)<0$
if and only if

$$
\left(\begin{array}{cc}
\operatorname{Re}(L(x)) & \operatorname{Im}(L(x)) \\
-\operatorname{Im}(L(x)) & \operatorname{Re}(L(x))
\end{array}\right)<0 .
$$

This suggests the following systematic procedure for turning complex LMIs into real ones:

- Decompose every complex matrix variable $X$ as
$X=X_{1}+j X_{2}$
where $X_{1}$ and $X_{2}$ are real
- Decompose every complex matrix coefficient $A$ as
$A=A_{1}+j A_{2}$
where $A_{1}$ and $A_{2}$ are real
- Carry out all complex matrix products. This yields affine expressions in $X_{1}, X_{2}$ for the real and imaginary parts of each LMI, and an equivalent real-valued LMI is readily derived from the above observation.

For LMIs without outer factor, a streamlined version of this procedure consists of replacing any occurrence of the matrix variable $X=X_{1}+j X_{2}$ by

$$
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)
$$

and any fixed matrix $A=A_{1}+j A_{2}$, including real ones, by

$$
\left(\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2} & A_{1}
\end{array}\right)
$$

For instance, the real counterpart of the LMI system

$$
\begin{equation*}
M^{H} X M<X, \quad X=X^{H}>I \tag{4-11}
\end{equation*}
$$

reads (given the decompositions $M=M_{1}+j M_{2}$ and $X=X_{1}+j X_{2}$ with $M \mathrm{j}, X j$ real):

$$
\begin{gathered}
\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)^{T}\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)\left(\begin{array}{cc}
M_{1} & M_{2} \\
-M_{2} & M_{1}
\end{array}\right)<\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right) \\
\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)<I .
\end{gathered}
$$

Note that $X=X^{H}$ in turn requires that $X_{1}=X_{1}^{H}$ and $X_{2}+X_{2}^{T}=0$. Consequently, $X_{1}$ and $\mathrm{X}_{2}$ should be declared as symmetric and skewsymmetric matrix variables, respectively.

Assuming, for instance, that $M \epsilon \mathbf{C}^{5 \times 5}$, the LMI system (Equation 4-11) would be specified as follows:

```
M1=real(M), M2=imag(M)
bigM=[M1 M2;-M2 M1]
setlmis([])
% declare bigX=[X1 X2;-X2 X1] with X1=X1' and X2+X2'=0:
[X1,n1,sX1] = lmivar(1,[5 1])
[X2,n2,sX2] = lmivar(3,skewdec(5,n1))
bigX = lmivar(3,[sX1 sX2;-sX2 sX1])
% describe the real counterpart of (1.12):
lmiterm([1 1 1 0],1)
lmiterm([1 1 1 1 bigX],1,1)
lmiterm([2 1 1 bigX],bigM',bigM)
lmiterm([2 1 1 bigX],1,1)
lmis = getlmis
```

Note the three-step declaration of the structured matrix variable bigX,

$$
\operatorname{bigX}=\left(\begin{array}{cc}
X_{1} & X_{2} \\
-X_{2} & X_{1}
\end{array}\right)
$$

1 Specify $X_{1}$ as a (real) symmetric matrix variable and save its structure description sX1 as well as the number n1 of decision variables used in $X_{1}$.

2 Specify $X_{2}$ as a skew-symmetric matrix variable using Type 3 of lmivar and the utility skewdec. The command skewdec $(5, \mathrm{n} 1)$ creates a 5 -by- 5 skew-symmetric structure depending on the decision variables $n 1+1$, $\mathrm{n} 1+2, \ldots$

3 Define the structure of bigX in terms of the structures sX1 and sX2 of $X_{1}$ and $X_{2}$.

See "Structured Matrix Variables" on page 4-33 for more details on such structure manipulations.

## Specifying $\mathbf{c}^{\mathbf{T}} \mathbf{x}$ Objectives for mincx

The LMI solver mincx minimizes linear objectives of the form $c^{T} x$ where $x$ is the vector of decision variables. In most control problems, however, such objectives are expressed in terms of the matrix variables rather than of $x$. Examples include Trace $(X)$ where $X$ is a symmetric matrix variable, or $u^{T} X u$ where $u$ is a given vector.

The function defcx facilitates the derivation of the $c$ vector when the objective is an affine function of the matrix variables. For the sake of illustration, consider the linear objective

$$
\operatorname{Trace}(X)+x_{0}^{T} P x_{0}
$$

where $X$ and $P$ are two symmetric variables and $x_{0}$ is a given vector. If lmsisys is the internal representation of the LMI system and if $x_{0}, X, P$ have been declared by

```
x0 = [1;1]
setlmis([])
X = lmivar(1,[3 0])
P = lmivar(1,[2 1])
 :
 :
lmisys = getlmis
```

the $c$ vector such that $c^{T} x=\operatorname{Trace}(X)+x_{0}^{T} P x_{0}$ can be computed as follows:

```
\(\mathrm{n}=\) decnbr(lmisys)
c \(=\operatorname{zeros}(\mathrm{n}, 1)\)
for \(j=1: n\),
 [Xj,Pj] = defcx(lmisys,j,X,P)
 \(c(j)=\operatorname{trace}(X j)+x 0 ' * P j * x 0\)
end
```

The first command returns the number of decision variables in the problem and the second command dimensions $c$ accordingly. Then the for loop performs the following operations:

1 Evaluate the matrix variables $X$ and $P$ when all entries of the decision vector $x$ are set to zero except $x j:=1$. This operation is performed by the function defcx. Apart from lmisys and j, the inputs of defcx are the identifiers $X$ and $P$ of the variables involved in the objective, and the outputs Xj and Pj are the corresponding values.

2 Evaluate the objective expression for $\mathrm{X}:=\mathrm{Xj}$ and $\mathrm{P}:=\mathrm{Pj}$. This yields the $j$-th entry of c by definition.

In our example the result is

```
C =
 3
1
2
1
```

Other objectives are handled similarly by editing the following generic skeleton:

```
n = decnbr(LMI system)
c = zeros(n,1)
for j=1:n,
 [matrix values] = defcx(LMI system,j,
matrix identifiers)
 c(j) = objective(matrix values)
```


## Feasibility Radius

When solving LMI problems with feasp, mincx, or gevp, it is possible to constrain the solution $x$ to lie in the ball
$x^{T} x<R^{2}$
where $R>0$ is called the feasibility radius. This specifies a maximum (Euclidean norm) magnitude for $x$ and avoids getting solutions of very large norm. This may also speed up computations and improve numerical stability. Finally, the feasibility radius bound regularizes problems with redundant variable sets. In rough terms, the set of scalar variables is redundant when an equivalent problem could be formulated with a smaller number of variables.

The feasibility radius $R$ is set by the third entry of the options vector of the LMI solvers. Its default value is $R=109$. Setting $R$ to a negative value means "no rigid bound," in which case the feasibility radius is increased during the optimization if necessary. This "flexible bound" mode may yield solutions of large norms.

## Well-Posedness Issues

The LMI solvers used in the LMI Lab are based on interior-point optimization techniques. To compute feasible solutions, such techniques require that the system of LMI constraints be strictly feasible, that is, the feasible set has a nonempty interior. As a result, these solvers may encounter difficulty when the LMI constraints are feasible but not strictly feasible, that is, when the LMI
$L(x) \leq 0$
has solutions while
$L(x)<0$
has no solution.
For feasibility problems, this difficulty is automatically circumvented by feasp, which reformulates the problem:

Find $x$ such that

$$
\begin{equation*}
L(x) \leq 0 \tag{4-12}
\end{equation*}
$$

as:
Minimize $t$ subject to

$$
\begin{equation*}
L x<t \times I . \tag{4-13}
\end{equation*}
$$

In this modified problem, the LMI constraint is always strictly feasible in $x, t$ and the original LMI Equation $4-12$ is feasible if and only if the global minimum $t_{\text {min }}$ of Equation 4-12 satisfies
$t_{\text {min }} \leq 0$
For feasible but not strictly feasible problems, however, the computational effort is typically higher as feasp strives to approach the global optimum $t_{\text {min }}=0$ to a high accuracy.

For the LMI problems addressed by mincx and gevp, nonstrict feasibility generally causes the solvers to fail and to return an "infeasibility" diagnosis. Although there is no universal remedy for this difficulty, it is sometimes possible to eliminate underlying algebraic constraints to obtain a strictly feasible problem with fewer variables.

Another issue has to do with homogeneous feasibility problems such as
$A^{T} P+P A<0, P>0$
While this problem is technically well-posed, the LMI optimization is likely to produce solutions close to zero (the trivial solution of the nonstrict problem). To compute a nontrivial Lyapunov matrix and easily differentiate between feasibility and infeasibility, replace the constraint $P>0$-by- $P>\alpha I$ with $\alpha>0$. Note that this does not alter the problem due to its homogeneous nature.

## Semi-Definite $B(x)$ in gevp Problems

Consider the generalized eigenvalue minimization problem
Minimize $\lambda$ subject to

$$
\begin{equation*}
A(x)<\lambda B(x), B(x)>0, C(x)<0 . \tag{4-14}
\end{equation*}
$$

Technically, the positivity of $B(x)$ for some $x \in R^{n}$ is required for the well-posedness of the problem and the applicability of polynomial-time interior-point methods. Hence problems where

$$
B(x)=\left(\begin{array}{cc}
B_{1}(x) & 0 \\
0 & 0
\end{array}\right)
$$

with $B_{1}(x)>0$ strictly feasible, cannot be directly solved with gevp. A simple remedy consists of replacing the constraints
$A(x)<B(x), B(x)>0$
by

$$
A(x)<\left(\begin{array}{ll}
Y & 0 \\
0 & 0
\end{array}\right), \quad Y<\lambda B_{1}(x), \quad B_{1}(x)>0
$$

where $Y$ is an additional symmetric variable of proper dimensions. The resulting problem is equivalent to Equation 4-14 and can be solved directly with gevp.

## Efficiency and Complexity Issues

As explained in "Introduction" on page 4-2, the term-oriented description of LMIs used in the LMI Lab typically leads to higher efficiency than the canonical representation

$$
\begin{equation*}
A_{0}+x_{1} A_{1}+\ldots+x_{N} A_{N}<0 . \tag{4-15}
\end{equation*}
$$

This is no longer true, however, when the number of variable terms is nearly equal to or greater than the number $N$ of decision variables in the problem. If your LMI problem has few free scalar variables but many terms in each LMI, it is therefore preferable to rewrite it as Equation 4-15 and to specify it in this form. Each scalar variable $x_{j}$ is then declared independently and the LMI terms are of the form $x_{j} A_{j}$.

If $M$ denotes the total row size of the LMI system and $N$ the total number of scalar decision variables, the flop count per iteration for the feasp and mincx solvers is proportional to

- $N^{3}$ when the least-squares problem is solved via. Cholesly factorization of the Hessian matrix (default) [2]
- $M$-by- $N^{2}$ when numerical instabilities warrant the use of QR factorization instead

While the theory guarantees a worst-case iteration count proportional to $M$, the number of iterations actually performed grows slowly with $M$ in most problems. Finally, while feasp and mincx are comparable in complexity, gevp typically demands more computational effort. Make sure that your LMI problem cannot be solved with mincx before using gevp.

## Solving $\mathbf{M}+\mathbf{P}^{\boldsymbol{T}} \mathbf{X Q}+\mathbf{Q}^{\boldsymbol{T}} \mathbf{X}^{\boldsymbol{T}} \mathbf{P}<\mathbf{0}$

In many output-feedback synthesis problems, the design can be performed in two steps:

1 Compute a closed-loop Lyapunov function via LMI optimization.
2 Given this Lyapunov function, derive the controller state-space matrices by solving an LMI of the form

$$
\begin{equation*}
M+P^{T} X Q+Q^{T} X^{T} P<0 \tag{4-16}
\end{equation*}
$$

where $M, P, Q$ are given matrices and $X$ is an unstructured $m$-by- $n$ matrix variable.

It turns out that a particular solution Xc of Equation 4-16 can be computed via simple linear algebra manipulations [1]. Typically, Xc corresponds to the center of the ellipsoid of matrices defined by Equation 4-16.

The function basiclmi returns the "explicit" solution Xc:

$$
X c=\operatorname{basiclmi}(M, P, Q)
$$

Since this central solution sometimes has large norm, basiclmi also offers the option of computing an approximate least-norm solution of Equation 4-16. This is done by

$$
X=\text { basiclmi(M,P,Q,'Xmin') }
$$

and involves LMI optimization to minimize $\|X\|$.

## Bibliography

[1] Gahinet, P., and P. Apkarian, "A Linear Matrix Inequality Approach to $H^{\circ}$ Control," Int. J. Robust and Nonlinear Contr., 4 (1994), pp. 421-448.
[2] Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, pp. 840-844.
[3] Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM Books, Philadelphia, 1994.
[4] Shamma, J.S., "Robustness Analysis for Time-Varying Systems," Proc. Conf. Dec. Contr., 1992, pp. 3163-3168.

# Analyzing Uncertainty Effects in Simulink 

- "Overview" on page 5-2
- "Robust Control Toolbox Block Library" on page 5-4
- "Specifying Uncertainty Using Uncertain State Space Blocks" on page 5-5
- "Simulating Uncertainty Effects" on page 5-8
- "Computing Uncertain State-Space Models from Simulink Models" on page 5-19
- "Analyzing Stability Margins" on page 5-26


## Overview

Robust Control Toolbox software provides tools to model uncertainty in Simulink ${ }^{\circledR}$. Using these tools, you can analyze how the uncertainty impacts the time- and frequency-domain behavior of the Simulink model.

The Uncertain State Space block, included in the Robust Control Toolbox block library, is a convenient way to incorporate uncertainty information in a Simulink model. For more information, see "Specifying Uncertainty Using Uncertain State Space Blocks" on page 5-5. Using this block, you can perform the following types of analysis:

- Vary the uncertainty and see how it affects the time responses (Monte Carlo analysis). See "Simulating Uncertainty Effects" on page 5-8.
- Analyze the effects of uncertainty on the linearized dynamics:
- If the operating point does not depend on the parameter uncertainty, use ulinearize to obtain an uncertain state-space model. You can then use usample to sample the uncertain variables and obtain a family of LTI models.
- If the operating point depends on the parameter uncertainty, use usample to sample the uncertainty and then use the Simulink ${ }^{\circledR}$ Control Design ${ }^{\text {TM }}$ linearize command to compute the linearized dynamics for each uncertainty value.

See "How to Vary Uncertainty Values" on page 5-8 and "Working with Models Containing Uncertain State Space Blocks" on page 5-19.

- Compute an uncertain linearization, i.e., obtain an uncertain state space model (uss object) that combines the uncertain variables with the linearized dynamics. You can use this model to perform worst-case robustness analysis. See "Working with Models Containing Uncertain State Space Blocks" on page 5-19.

If you cannot use Uncertain State Space blocks in the Simulink model because you share the model or generate code, you can still compute an uncertain linearization by specifying a block to linearize to an uncertain variable. For example, you can specify a gain block to linearize to an uncertain real parameter (ureal). See "Working with Models Containing Core Simulink or

Custom Blocks" on page 5-20. You can then use the uncertain state-space model to analyze robustness in the linear operating range.

## Robust Control Toolbox Block Library

Robust Control Toolbox software provides an Uncertain State Space block to model parametric and dynamic uncertainty in Simulink. The block library also contains a MultiPlot Graph block that you use with the Uncertain State Space block to plot and visualize Monte Carlo simulation responses.

To open the Robust Control Toolbox block library, type the following command at the MATLAB prompt:

RCTblocks

The block library opens, as shown in the following figure.


Alternatively, select Start > Simulink > Library Browser. In the Library Browser, select Robust Control Toolbox.

For more information on the Robust Control Toolbox blocks, see Robust Control Toolbox Reference.

## Specifying Uncertainty Using Uncertain State Space Blocks

- "How to Specify Uncertainty in Uncertain State Space Blocks" on page 5-5
- "Next Steps" on page 5-7


## How to Specify Uncertainty in Uncertain State Space Blocks

Specifying uncertainty in the Uncertain State Space block makes the uncertainty a part of the Simulink model and affects both simulation and linearization. Use this approach to vary the uncertainty and analyze the effects on simulation or linearization.

To specify uncertainty in the Uncertain State Space block:
1 Drag and drop an Uncertain State Space block from the Robust Control Toolbox block library into a Simulink model. For more information on how to open the block library, see "Robust Control Toolbox Block Library" on page 5-4.


2 In the Simulink model, double-click the Uncertain State Space block to open the Function Block Parameters: Uncertain State Space dialog box, as shown in the following figure.


3 Specify an uncertain state-space model in the Uncertain system variable (uss) field. The model must be an uss object or any other model that can be converted to uss, such as umat, ureal and ultidyn. The model depends on a set of uncertain variables (ureal or ultidyn) and you can specify the model as one of the following:

- Function or expression that evaluates to an uss model. For example, ss(ureal('a',-5), 5, 1, 1).
- Variable, defined in the MATLAB workspace. For example, unc_sys, where unc_sys is defined as ss(ureal('a', -5 ) , $5,1,1$ ) in the workspace.

4 Specify values for the uncertain variables that the uncertain state-space model you specify in step 3 uses. For example, if you specify the uncertain system as ureal('g',2)*tf(1, [ureal(`tau'), 1], then you must specify values for the uncertain variables $g$ and tau. To do so, enter a structure with fields $g$ and tau in the Uncertainty value (struct or [] to use nominal value) field. You can also enter [] to use the nominal values of the uncertain parameters $g$ and tau.

Tip: You can also use this field to vary the uncertainty values for performing Monte Carlo simulation. For more information, see "Simulating Uncertainty Effects" on page 5-8.

5 (Optional) Specify the initial states of the nominal and uncertain dynamics in the Initial states (nominal dynamics) and Initial states (uncertain dynamics) fields, respectively.

For more information on the block parameters, see the Uncertain State Space block reference page.

## Next Steps

After you specify uncertainty in Uncertain State Space blocks, you can perform one of the following:

- Simulate the model using nominal, manually-defined or random values, as described in "Simulating Uncertainty Effects" on page 5-8.
- Perform an uncertain linearization, as described in "Working with Models Containing Uncertain State Space Blocks" on page 5-19 section of "Computing Uncertain State-Space Models from Simulink Models" on page 5-19.


## Simulating Uncertainty Effects

- "How to Simulate Effects of Uncertainty" on page 5-8
- "How to Vary Uncertainty Values" on page 5-8


## How to Simulate Effects of Uncertainty

As described in "Specifying Uncertainty Using Uncertain State Space Blocks" on page $5-5$, the uncertain state-space model you specify in the Uncertain State Space block depends on a set of uncertain variables (ureal or ultidyn objects.) You can simulate the model using nominal value of these uncertain variables. Additionally, you can sample these uncertain variables and simulate the model for various values in the uncertainty range (Monte Carlo simulation.) For more information, see "How to Vary Uncertainty Values" on page 5-8. You can view and compare the simulation results for various sample values of uncertainty using the MultiPlot Graph block.

## How to Vary Uncertainty Values

There are two ways to control the uncertainty values using the Uncertainty value (struct or [] to use nominal value) field of the Uncertain State Space block parameters dialog box:

- For simple models with few uncertain variables or one Uncertain State Space block, type the value in the Uncertain State Space block itself. For more information, see "Varying Uncertainty Values Using Individual Uncertain State Space Blocks" on page 5-9.
- For complex models with large number of uncertain variables or Uncertain State Space blocks, use a single data structure for all uncertain variables referenced by the model. Using this approach, you can collectively control the values of all or a subset of uncertain variables and toggle between nominal and user-defined values from the MATLAB prompt. For more information, see "Varying Uncertainty Values Across Multiple Uncertain State Space Blocks" on page 5-14.


## Varying Uncertainty Values Using Individual Uncertain State Space Blocks

This section describes the workflow for varying uncertainty values using individual Uncertain State Space blocks in a Simulink model. Use this approach for simple models with few uncertain variables or one Uncertain State Space block.

This section uses a simple Simulink model to provide step-by-step instructions for:

- Toggling between nominal, manually defined and randomly-generated uncertainty values associated with the Uncertain State Space block.
- Simulating the model's responses for these uncertainty values.

1 Open the Simulink model rct_sim_ex1.
rct_sim_ex1
The model contains an Uncertain State Space block, as shown in the following figure.


2 Double-click the Uncertain State Space block to open the Function Block Parameters dialog box.

```
Function Block Parameters: Uncertain State Space
Uncertain State Space Block (mask) (link)
This block models linear systems with uncertain parameters and uncertain dynamics (see USS).
You can simulate how uncertainty affects system performance by generating randomized values for the uncertain variables. Use UFIND to find all uncertain variables in the model and USAMPLE to generate sample values for the "Uncertainty value" mask parameter. Each uncertainty value represents one possible behavior of the uncertain system.
You can also investigate uncertainty effects in the frequency domain by linearizing the Simulink model with ULINEARIZE. This computes an uncertain state-space model (USS) that aggregates the uncertainty from all Uncertain State Space blocks.
```

Parameters
unc_sys
Uncertainty value (struct or [] to use nominal value):
[]
Initial states (nominal dynamics):
[]
Initial states (uncertain dynamics):
[]

The Uncertain State Space block uses the uncertain system variable unc_sys. This variable is defined in the Model workspace as unc_sys= ss(ureal('a',-1,'Range',[-2-.5]), 1,5,0)*(1+0.1*input_unc). The uncertain model depends on a single uncertain variable named a. The Uncertainty value field specifies to use nominal value of the uncertain variable a.

Click OK to close the dialog box.
3 Click to simulate the model.
The software uses the nominal value of a during simulation. After the simulation completes, the MultiPlot Graph shows the following plot.


4 To simulate the model using a manually defined value of a:
a Double-click the Uncertain State Space block, and enter struct('a', -0.3) in the Uncertainty value field.

Uncertain system variable (uss):
unc_sys
Uncertainty value (struct or [] to use nominal value):
struct('a',-0.3)
b Click
to simulate the model.
The MultiPlot Graph shows the following responses, corresponding to the nominal and manually-defined values of a.


5 Pick a random value of a in its uncertainty range. To do so, double-click the Uncertain State Space block, and type usample(ufind(unc_sys)) in the Uncertainty value field.

Uncertain system variable (uss):
unc_sys
Uncertainty value (struct or [] to use nominal value):
usample(ufind(unc_sys))

6 Analyze the uncertainty effects by simulating the model ten times using the following commands:

```
for i=1:10;
 sim('rct_sim_ex1',10);
end
```

During simulation, the software samples the uncertain variable a in its uncertainty range [-2-0.5] and shows the simulated response for each sample value. The plots cycle through seven different colors, and the last response appears in red.


Tip: You can clear the plots in the MultiPlot Graph block before you run the simulation.

## Varying Uncertainty Values Across Multiple Uncertain State Space Blocks

This section describes the workflow for varying uncertainty values across multiple Uncertain State Space blocks in a Simulink model. Use this approach for complex models with large number of uncertain variables or Uncertain State Space blocks.

This section uses a Simulink model to provide step-by-step instructions for toggling between nominal and user-defined uncertainty values at the MATLAB prompt.

1 Open the Simulink model rct_sim_ex2.

```
rct_sim_ex2
```

The model contains two Uncertain State Space blocks, as shown in the following figure.


The Unmodeled dynamics and First order with uncertain pole blocks depend on the uncertain variables input_unc and a.

2 Double-click the Unmodeled dynamics block to open the block parameters dialog box. The Uncertainty value field contains the variable val_all. Similarly, the Uncertainty value field in the First order with uncertain pole block parameters dialog contains the variable val_all. You use this variable to vary the uncertain variable values across both the Uncertain State Space blocks.

## Uncertain system variable (uss):

## wt tinput_unc

Uncertainty value (struct or [ to use nominal value):

```
val_all
```

Note When defining val_all, you can enter only a subset of uncertain variables referenced by the model in the structure. When you do not specify some uncertain variables, the software uses their nominal value during simulation.

3 At the MATLAB prompt, specify val_all = []; and click
to simulate the model.
The software uses the nominal values of the uncertain variables a and input_unc during simulation. After the simulation completes, the MultiPlot Graph block shows the following figure.


4 Generate random samples of uncertainty values:
a Find all Uncertain State Space blocks and associated uncertain variables in the model.

```
uvars=ufind('rct_sim_ex2')
```

MATLAB returns the following result:
uvars =

```
 a: [1x1 ureal]
input_unc: [1x1 ultidyn]
```

The uncertain variables a and input_unc are ureal and ultidyn objects, respectively and the structure uvars lists them by name.
b Randomly sample the uncertain variables.

```
val_all = usample(uvars)
```

MATLAB returns the following result:

```
val_all =
```

    a: - 1.1167
    input_unc: [1x1 ss]
    The structure val_all contains sample values of the uncertain variables a and input_unc. The software samples the values within the specified uncertainty ranges for a and input_unc.

5 Simulate the model for the uncertainty values val_all. By repeating the process inside a for-loop, you can assess how uncertainty affects the model responses. For example, perform 10 simulations using random uncertainty values:

```
for i=1:10;
 val_all = usample(uvars)
 sim('rct_sim_ex2',10);
end
```

During each simulation, the software samples values of the uncertain variables input_unc and a and plots the response for the sampled values. The MultiPlot Graph block shows the following responses obtained using random sample values of uncertain variables.


## Computing Uncertain State-Space Models from Simulink Models

- "Ways to Compute Uncertain State-Space Models from Simulink Models" on page 5-19
- "Working with Models Containing Uncertain State Space Blocks" on page 5-19
- "Working with Models Containing Core Simulink or Custom Blocks" on page 5-20
- "Next Steps" on page 5-25


## Ways to Compute Uncertain State-Space Models from Simulink Models

When you have the Simulink Control Design software, you can compute an uncertain linearization, i.e., an uncertain state-space model (uss) combining the uncertain variables with linearized dynamics. Use the uss model to perform linear analysis and robust control design.

You can compute an uncertain linearization in one of the following ways:

- Using the ulinearize command, as described in "Working with Models Containing Uncertain State Space Blocks" on page 5-19.
- Using the Simulink Control Design linearize command, as described in "Working with Models Containing Core Simulink or Custom Blocks" on page 5-20.


## Working with Models Containing Uncertain State Space Blocks

To obtain an uncertain state-space model from a Simulink model that contains Uncertain State Space blocks, use the following steps:

[^0]1 (Prerequisite) Create or open the Simulink model.
2 (Prerequisite) In the Simulink model, specify the linearization input and output points using Simulink Control Design getlinio or linio commands. For more information, see "Selecting Inputs and Outputs for the Linearized Model" in the Simulink Control Design documentation.

3 (Prerequisite) If you have not already done so, specify uncertainty in the Simulink model as described in "Specifying Uncertainty Using Uncertain State Space Blocks" on page 5-5.

Note The software does not evaluate the uncertain variables during linearization. Thus, the value of the uncertainty does not affect the linearization.

4 Run ulinearize to compute an uncertain linearization. This command returns an uss model.

Note If you use the Simulink Control Designlinearize command, the Uncertain State Space blocks linearize to their nominal value.

For more information on linearization and how to evaluate the results, see "Linearization" in the Simulink Control Design documentation.

For an example of how to use the Simulink Control Design linearize command, see the Linearization of Simulink Models with Uncertainty demo.

## Working with Models Containing Core Simulink or Custom Blocks

In some cases, you cannot use Uncertain State Space blocks in the Simulink model because you share the model or generate code. You can still account for uncertainty in your linear analysis without specifying uncertainty using Uncertain State Space blocks. Robust Control Toolbox lets you specify a core or custom Simulink block to linearize to an uncertain variable. The linearization produces an uncertain state-space uss model. The specified
uncertainty associates only with the block and does not affect the model simulation. For more information, see "Controlling Block Linearization" in the Simulink Control Design User's Guide.

Note If you have Uncertain State Space blocks in the model and want to obtain an uncertain state-space model, see "Working with Models Containing Uncertain State Space Blocks" on page 5-19.

To specify blocks to linearize to uncertain variables and obtain an uncertain state-space model:

1 (Prerequisite) Create or open the Simulink model.
2 (Prerequisite) Specify linearization input and output points using the Simulink Control Design getlinio or linio commands.

3 Specify a block to linearize to an uncertain variable:
a Right-click the block and select Linear Analysis > Specify Linearization.


This action opens the Block Linearization Specification dialog box.

b In the Block Linearization Specification dialog box, select the Specify block linearization using a check box. Selecting this check box lets you to specify an uncertain variable for linearization.

This check box defaults to MATLAB Expression in the drop-down menu. This option lets you specify the block to linearize to an uncertain variable using a MATLAB expression containing Robust Control Toolbox functions. To learn more about the options, see "Controlling Block Linearization" in the Simulink Control Design documentation.
c In the Enter an expression to specify the linearization of the Simulink block field, enter an expression, which must evaluate to an uncertain variable or uncertain model, such as ureal, umat, ultidyn or uss.

d Click OK to save the changes.

Note You can also specify a block to linearize to an uncertain variable at the command line. For an example, see "Example - Specifying a Block to Linearize To an Uncertain Variable at the Command Line" on page 5-23.

4 Run the linearize command to compute an uncertain linearization. This command returns an uss model.

For more information on linearization and how to validate linearization results, see "Linearization" in the Simulink Control Design documentation.

For an example of how to use the linearize command to compute an uncertain linearization, see the Linearization of Simulink Models with Uncertainty demo.

## Example - Specifying a Block to Linearize To an Uncertain Variable at the Command Line

This example demonstrates how to specify a core Simulink block to linearize to an uncertain variable and compute an uncertain linearization at the command line. To learn how to perform this task using the user interface, see "Working with Models Containing Core Simulink or Custom Blocks" on page 5-20.

1 Open the Simulink model.
sldemo_f14
2 Double-click the Aircraft Dynamics Model block to view the subsystem.


3 Specify uncertain variables for the gain blocks Zd and Mw in the Aircraft Dynamics Model subsystem.

```
spec.Type = 'Expression';
spec.Specification = ureal('Zd',-63.9979,'Percentage',20);
BlockSubs(1) = struct('Name','sldemo_f14/Aircraft Dynamics Model/Gain5','Value',spec);
spec.Specification = ureal('Mw',-63.9979,'Percentage',20);
BlockSubs(2) = struct('Name','sldemo_f14/Aircraft Dynamics Model/Gain4','Value',spec);
```

4 Compute the uncertain linearization.

```
mdl='sldemo_f14';
sys=linearize(mdl,BlockSubs)
```

MATLAB returns an uncertain state-space model, as shown in the following results:

```
USS: 7 States, 2 Outputs, 1 Input, Continuous System
 Mw: real, nominal = -64, variability = [-20 20]%, 1 occurrence
 Zd: real, nominal = -64, variability = [-20 20]%, 1 occurrence
```


## Next Steps

After computing an uncertain linearization, you can perform one of the following:

- Perform robustness analysis, as described in Chapter 2, "Generalized Robustness Analysis".
- Perform robust control design, as described in "H-Infinity and Mu Synthesis".


## Analyzing Stability Margins

- "Using the loopmargin Command" on page 5-26
- "How Stability Margin Analysis Using Loopmargin Differs Between Simulink and LTI Models" on page 5-26
- "How to Analyze Stability Margin of Simulink Models" on page 5-27
- "Example - Computing Stability Margins of a Simulink Model" on page 5-28


## Using the loopmargin Command

Robust Control Toolbox provides the loopmargin command to analyze the stability margins of LTI models created in MATLAB and Simulink models. To use loopmargin with Simulink models, you must have the Simulink Control Design software. This section describes the difference between the MATLAB and Simulink approaches of using loopmargin and the workflow for computing the stability margin of Simulinkmodels. For more information on how to analyze the stability margins of LTI models, see "Nominal Stability Margins" section in the Robust Control Toolbox Getting Started Guide.

## How Stability Margin Analysis Using Loopmargin Differs Between Simulink and LTI Models

When analyzing stability margins of LTI models using the syntax [ $\mathrm{cm}, \mathrm{dm}, \mathrm{mm}$ ] $=$ loopmargin ( $\mathrm{P}, \mathrm{C}$ ), the software assumes the input and output of the linear plant P as the margin analysis points, as shown in the following figure.


Analyzing stability margin of Simulink models differs from analyzing stability margin of LTI models because you can enter specific margin analysis points in the Simulink model. For more information on how to assign margin analysis points in Simulink models, see the "Usage with Simulink" section of the loopmargin reference page.

## How to Analyze Stability Margin of Simulink Models

The loopmargin command computes the following types of stability margins:

- Loop-at-a-time classical gain and phase margins
- Loop-at-a-time disk margins
- Multi-loop disk margin

To learn more about these stability margins, see the "Algorithms" section of the loopmargin reference page.

The loopmargin command computes the stability margin based on linearization of Simulink models. To compute stability margins of a Simulink model:

1 Specify the block where you want to define a margin analysis point.
2 Specify the output port of the block where you want the margin analysis point.

The software performs the analysis by opening the loop at all specified margin analysis point.

3 Use the loopmargin command to compute the stability margins at the margin analysis point.

Optionally, you can compare the classical gain and phase margins obtained using loopmargin with the stability margins computed for the linearized model. The results using the two approaches should match for simple SISO models. For MIMO models, the loopmargin command provides richer robustness information. For an example, see "Example - Computing Stability Margins of a Simulink Model" on page 5-28.

Additionally, you can compute stability margins by specifying multiple margin analysis points and multiple operating points. For an example, see the Loop Margins for an Airframe Autopilot demo.

## Example - Computing Stability Margins of a Simulink Model

This example illustrates how to compute the stability margins of the airframemargin model and compare the results with stability margins computed using the linearized model.

1 Open the Simulink model:
airframemargin
The Simulink model, as shown in the following figure opens.


2 Define a margin analysis point at the output of the Airframe Model block by typing:
block1 = 'airframemargin/Airframe Model';
3 Specify the output az of the Airframe Model block as a margin analysis point by typing:
port1 = 1;
4 Compute stability margins by typing:
[cm, dm,mm] = loopmargin('airframemargin',block1,port1);
5 View the classical gain and phase margins:
cm
MATLAB return the following results:

```
cm =
 GainMargin: [4.5652 2.5055e+003]
 GMFrequency: [7.1979 314.1593]
 PhaseMargin: 65.1907
 PMFrequency: 2.1463
 DelayMargin: 53.0113
 DMFrequency: 2.1463
 Stable: 1
```

6 Compare the classical gain and phase margins cm with stability margins of the linearized model computed using allmargin:

```
% Define linearization I/O points.
io = linio('airframemargin/Airframe Model',1,'outin','on');
% Linearize the model.
lin_sys = linearize('airframemargin',io);
% Compute gain and phase margins.
cm_lin = allmargin(-lin_sys);
```

MATLAB returns the following results:

```
cm_lin =
```

            GainMargin: [4.5652 2.5055e+003]
            GMFrequency: [7.1979 314.1593]
            PhaseMargin: 65.1907
            PMFrequency: 2.1463
            DelayMargin: 53.0113
            DMFrequency: 2.1463
            Stable: 1
    The gain and phase margins, cm and cm_lin, computed using the two approaches match.

## Examples

Use this list to find examples in the documentation.

## Building Uncertain Models

"Generating One Sample" on page 1-45
"Generating Many Samples" on page 1-45
"Sampling ultidyn Atoms" on page 1-46
"Creating Arrays with stack and cat Functions" on page 1-53
"Creating Arrays by Assignment" on page 1-55
"Creating Arrays with usample" on page 1-57
"Creating Arrays with usubs" on page 1-58
"Creating Arrays with gridureal" on page 1-59
"Creating Arrays with repmat" on page 1-60

## The LMI Lab

"Example: Specifying LMI Systems" on page 4-9
"Example: Minimizing Linear Objectives under LMI Constraints" on page 4-23
"Example: Specifying Matrix Variable Structures" on page 4-33
"Example: Specifying Interdependent Matrix Variables" on page 4-34

## Analyzing Uncertainty Effects in Simulink

"Varying Uncertainty Values Using Individual Uncertain State Space Blocks" on page 5-9
"Varying Uncertainty Values Across Multiple Uncertain State Space Blocks" on page 5-14
"Example - Specifying a Block to Linearize To an Uncertain Variable at the Command Line" on page 5-23
"Example - Computing Stability Margins of a Simulink Model" on page 5-28


[^0]:    Note If you do not have Uncertain State Space blocks in the model but still want to obtain an uncertain state-space model, see "Working with Models Containing Core Simulink or Custom Blocks" on page 5-20.

